Thm: f is differentiable at a implies f is continuous at a.

Thm: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right) . f$ is differentiable at \mathbf{a} iff $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable at \mathbf{a} for all $i=1, \ldots, m$

Thm: If f is differentiable at a then $\frac{\partial f_{i}}{\partial x_{j}}$ exists for all i, j and $D f(\mathbf{a})=$ the Jacobian evaluated at \mathbf{a}.

Thm: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)$. If $\frac{\partial f_{i}}{\partial x_{j}}$ exists and are continuous in a neighborhood of a for all i, j, then f is differentiable at a

Ex: Is $f(x, y)=x^{2} y$ differentiable at $(3,1)$.

Find the equation of the tangent plane to $f(x, y)=x^{2} y$ at $(3,1)$.

Thm: If $f, g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable at \mathbf{a}, then $f+g$ is differentiable at a and $D(f+g)=D f+D g$.

Thm: Let $c \in \mathbf{R}$. If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable at \mathbf{a}, then $c f$ is differentiable at \mathbf{a} and $D(c f)=c D f$.

Thm: If $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable at \mathbf{a} and if $f: \mathbf{R}^{m} \rightarrow$ \mathbf{R}^{k} is differentiable at $\mathrm{g}(\mathbf{a})$, then $f \circ g$ is differentiable at \mathbf{a} and $D(f \circ g)(\mathbf{a})=D f(g(\mathbf{a})) D g(\mathbf{a})$.

Note for the product and quotient rule, f, g are real-valued functions, NOT vector valued.

Thm: If $f, g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable at a, then $f g$ is differentiable at \mathbf{a} and $D(f g)=g(\mathbf{a}) D f(\mathbf{a})+f(\mathbf{a}) D g(\mathbf{a})$.

Thm: If $g(\mathbf{a}) \neq 0$ and $f, g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable at \mathbf{a}, then f / g is differentiable at a and $D(f / g)=\frac{g(\mathbf{a}) D f(\mathbf{a})-f(\mathbf{a}) D g(\mathbf{a})}{g(\mathbf{a})^{2}}$.

Estimate f(3.1, .9)

