1.1 Vectors:

Let $\mathbf{v}=\binom{1}{2}$.

If $\mathbf{v}=$ velocity in $m / s e c$ of an object, then the object is moving east at a rate of $1 \mathrm{~m} / \mathrm{sec}$ and north at a rate of $2 \mathrm{~m} / \mathrm{sec}$

Speed of the object $=$

A vector can be described by its Euclidean coordinates OR by its length and direction.

Let $\mathbf{w}=\binom{3}{-1}$. Then $\mathbf{v}+\mathbf{w}=\binom{1}{2}+\binom{3}{-1}=$

$\mathbf{v}-\mathbf{w}=\binom{1}{2}-\binom{3}{-1}=$

2.1 Let $f: X \rightarrow Y$ where $X \subset \mathbf{R}^{n}, Y \subset \mathbf{R}^{m}$

Graph of $f=\{(\mathbf{x}, f(\mathbf{x})) \mid \mathbf{x} \in X\} \subset \mathbf{R}^{n} \times \mathbf{R}^{m}$
Domain of $f=X, \quad$ Codomain of $f=Y$
Range of $f=$ Image of $f=f(X)$

$$
=\{y \in Y \mid \text { there exists } x \in X \text { such that } f(x)=y\} .
$$

f is a function if for all x in domain of $f, f(x)$ has a unique value.
I.e, for all $x, y \in X$, if $x=y$, then $f(x)=f(y)$ and for all $x \in X, f(x)$ is defined.
f is 1:1 if $f(x)=f(y)$ implies $x=y$.
f gives a one-to-one correspondence between X and $f(X)$.
Given $b \in Y, f(x)=b$ has at most one solution
Side-note: $f(x)=b$ has exactly one solution if $b \in f(X)$.
Side-note: $f(x)=b$ has no solution if $b \notin f(X)$.
f is onto if $f(X)=Y$ (i.e., image of $f=$ codomain of f).
Given $b \in Y, f(x)=b$ has at least one solution.
$\operatorname{Ex} 1: f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(\mathbf{x})=\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$
Domain $=$
Codomain $=$
Image $=$

Is $f 1: 1$?
Proof:

Is f onto?

Proof:

Alternate Proof:

Ex 2: $g(x, y)=\left(x^{2} y, x^{4}-y, x^{6}\right)$
Domain $=$
Codomain $=$
Is $g 1: 1$?

Proof:

Is g onto?

Proof:

Ex 3: $h(\mathbf{x})=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
I.e, $h(\mathbf{x})=(x+2 y+3 z, 4 x+5 y+6 z)$.

Domain $=\quad$ Codomain $=\quad$ Image $=$

Is h onto?
Is $h 1: 1$?

How many solutions does $h(\mathbf{x})=\mathbf{b}$ have?
I.e., how many solutions does $\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{b_{1}}{b_{2}}$ have?
I.e, how many solutions does the following system of equations have:

$$
\begin{aligned}
& x+2 y+3 z=b_{1} \\
& 4 x+5 y+6 z=b_{2}
\end{aligned}
$$

Does $\binom{1}{4} x+\binom{2}{5} y+\binom{3}{6} z$ span all of $\mathbf{R}^{2} ?$
Is $\left\{\binom{1}{4},\binom{2}{5},\binom{3}{6}\right\}$ linearly independent?

Definitions:

If the codomain of f is \mathbf{R} (i.e., $f: X \rightarrow \mathbf{R}$), we say that f is real-valued or scalar valued.

Suppose $f: X \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$ and c is a constant scalar.
The level curve at height c of f is the curve in \mathbf{R}^{2} defined by $f(x, y)=c$. That is,
the level curve at height c of $f=\left\{(x, y) \in \mathbf{R}^{2} \mid f(x, y)=c\right\}$.
The contour curve at height c of f is the curve in \mathbf{R}^{3} defined by the two equations, $z=f(x, y), z=c$. That is,
the contour curve at height c of $f=$

$$
\begin{array}{r}
=\left\{(x, y, z) \in \mathbf{R}^{2} \mid z=f(x, y)=c\right\} \\
=\left\{(x, y, f(x, y)) \in \mathbf{R}^{3} \mid f(x, y)=c\right\} .
\end{array}
$$

Recall the graph of $f=\{(x, y, z) \mid z=f(x, y)\}$

$$
=\{(x, y, f(x, y)) \mid(x, y) \in X\} \subset \mathbf{R}^{2} \times \mathbf{R}
$$

The section of the graph of f by the plane $x=c$ is the set of points in \mathbf{R}^{3} defined by the two equations, $z=f(x, y), x=c$.
That is,
the section by $x=c$ is $\left\{(x, y, z) \in \mathbf{R}^{2} \mid z=f(x, y), x=c\right\}$

$$
=\left\{(c, y, f(c, y)) \in \mathbf{R}^{3} \mid(c, y) \in X\right\} .
$$

The section by $y=c$ is $\left\{(x, y, z) \in \mathbf{R}^{2} \mid z=f(x, y), y=c\right\}$

$$
=\left\{(x, c, f(x, c)) \in \mathbf{R}^{3} \mid(x, c) \in X\right\} .
$$

