Let $f: X \rightarrow Y$ where $X \subset \mathbf{R}^{n}, Y \subset \mathbf{R}^{m}$
Graph of $f=\{(\mathbf{x}, f(\mathbf{x})) \mid \mathbf{x} \in X\} \subset \mathbf{R}^{n} \times \mathbf{R}^{m}$
Domain of $f=X, \quad$ Codomain of $f=Y, \quad$ Image of $f=f(X)$.
f is a function if for all x in domain of $f, f(x)$ has a unique value.
I.e, for all $x, y \in X$, if $x=y$, then $f(x)=f(y)$
f is $1: 1$ if $f(x)=f(y)$ implies $x=y$.
f gives a one-to-one correspondence between X and $f(X)$.
Given $b \in Y, f(x)=b$ has at most one solution
Side-note: $f(x)=b$ has exactly one solution if $b \in f(X)$. Side-note: $f(x)=b$ has no solution if $b \notin f(X)$.
f is onto if $f(X)=Y$ (i.e., image of $f=$ codomain of f).
Given $b \in Y, f(x)=b$ has at least one solution.
Ex 1: $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(\mathbf{x})=\|\mathbf{x}\|$
Domain $=\mathbf{R}^{n} \quad$ Codomain $=\mathbf{R} \quad$ Image $=[0, \infty)$
f is not 1:1: $f(1,0, \ldots, 0)=1=f(0,1,0, \ldots, 0)$
f is not onto: $f(\mathbf{x})=-1$ has no solution.

$$
\text { or codomain of } f=\mathbf{R} \neq[0, \infty)=\text { image of } f
$$

Ex 2: $g(x, y)=\left(x^{2} y, x^{4}-y, x^{6}\right)$

$$
\text { Domain }=\mathbf{R}^{2} \quad \text { Codomain }=\mathbf{R}^{3}
$$

g is not 1:1: $g(1,0)=(0,1,1)=g(-1,0)$
g is not onto: $g(x, y)=(0,1,-1)$ has no solution.
$\operatorname{Ex} 3: h(x)=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
I.e, $h(x)=(x+2 y+3 z, 4 x+5 y+6 z)$.

Domain $=\quad$ Codomain $=\quad$ Image $=$
Is h onto?
Is $h 1: 1$?
How many solutions does $h(\mathbf{x})=\mathbf{b}$ have?
I.e., how many solutions does $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{b_{1}}{b_{2}}$ have?
I.e, how many solutions does the following system of equations have:

$$
\begin{aligned}
& x+2 y+3 z=b_{1} \\
& 4 x+5 y+6 z=b_{2} .
\end{aligned}
$$

I.e., does $\binom{1}{4} x+\binom{2}{5} y+\binom{3}{6} z$ span all of \mathbf{R}^{2} ?

