Let $f: X \to Y$ where $X \subset \mathbf{R}^n, Y \subset \mathbf{R}^m$

Graph of $f = \{(\mathbf{x}, f(\mathbf{x})) \mid \mathbf{x} \in X\} \subset \mathbf{R}^n \times \mathbf{R}^m$

Domain of f = X, Codomain of f = Y, Image of f = f(X).

f is a function if for all x in domain of f, f(x) has a unique value.

I.e, for all $x, y \in X$, if x = y, then f(x) = f(y)

f is 1:1 if f(x) = f(y) implies x = y.

f gives a one-to-one correspondence between X and f(X).

Given $b \in Y$, f(x) = b has at most one solution

Side-note: f(x) = b has exactly one solution if $b \in f(X)$. Side-note: f(x) = b has no solution if $b \notin f(X)$.

f is onto if f(X) = Y (i.e., image of f = codomain of f).

Given $b \in Y$, f(x) = b has at least one solution.

Ex 1: $f : \mathbf{R}^n \to \mathbf{R}, f(\mathbf{x}) = ||\mathbf{x}||$

Domain = \mathbf{R}^n Codomain = \mathbf{R} Image = $[0, \infty)$

f is not 1:1:
$$f(1, 0, ..., 0) = 1 = f(0, 1, 0, ..., 0)$$

f is not onto: $f(\mathbf{x}) = -1$ has no solution.

or codomain of $f=\mathbf{R}\neq [0,\infty)=\text{image of }f$

Ex 2: $g(x, y) = (x^2y, x^4 - y, x^6)$ Domain = \mathbb{R}^2 Codomain = \mathbb{R}^3 g is not 1:1: g(1,0) = (0,1,1) = g(-1,0) g is not onto: g(x,y) = (0,1,-1) has no solution.Ex 3: $h(x) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ I.e, h(x) = (x + 2y + 3z, 4x + 5y + 6z).Domain = Codomain = Image = Is h onto? Is h 1:1?

How many solutions does $h(\mathbf{x}) = \mathbf{b}$ have?

I.e., how many solutions does
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
 have?

I.e, how many solutions does the following system of equations have:

$$x + 2y + 3z = b_1,$$

$$4x + 5y + 6z = b_2.$$

I.e., does $\begin{pmatrix} 1\\4 \end{pmatrix} x + \begin{pmatrix} 2\\5 \end{pmatrix} y + \begin{pmatrix} 3\\6 \end{pmatrix} z$ span all of \mathbb{R}^2 ?