Section 1.6: \mathbf{R}^n

Thm (Cauchy-Schwarz Inequality): Let \mathbf{u} and $\mathbf{v} \in \mathbf{R}^n$. Then

$$\mathbf{u} \cdot \mathbf{v} \leq ||\mathbf{u}|| ||\mathbf{v}||$$

Recall in \mathbf{R}^2 and in \mathbf{R}^3 , $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos\theta$

Thm (Triangle Inequality): Let \mathbf{u} and $\mathbf{v} \in \mathbf{R}^n$. Then

$$||\mathbf{u} + \mathbf{v}|| \leq ||\mathbf{u}|| + ||\mathbf{v}||$$

A matrix is a vector of vectors

Example of a 2×3 matrix:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Operations on Matrices

 $A = (a_{ij}), B = (b_{ij}), C = (c_{ij}).$

Defn: Two matrices A and B are equal, if they have the same size and $a_{ij} = b_{ij}$ for all i = 1, ..., n, j = 1, ..., m

Defn:
$$A + B = (a_{ij} + b_{ij}).$$

Defn: $cA = (ca_{ij})$.

Defn: -B = (-1)B.

Defn: A - B = A + (-B).

Defn: The zero matrix $= 0 = (a_{ij})$ where $a_{ij} = 0$ for all i, j.

Defn: The identity matrix $= I = (a_{ij})$ where $a_{ij} = 0$ for all $i \neq j$ and $a_{ii} = 1$ for all i and I is a square matrix.

The transpose of the $m \times n$ matrix $A = A^T = (a_{ji})$.

Suppose A is an $n \times r$ matrix, B is an $r \times n$. AB = C where

$$c_{ij} = row(i) \text{ of } A \cdot column(j) \text{ of } B$$
$$= a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ir}b_{rj}.$$

Ex:
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 10 & 1 \\ 0 & 4 \end{bmatrix} =$$

*j*th column of AB = A[jth column of B]In other words $AB = A[b_1...b_n] = [Ab_1...Ab_n]$

*i*th row of
$$AB = [i$$
th row of $A]B$
In other words $AB = \begin{bmatrix} a(1) \\ \cdot \\ \cdot \\ a(n) \end{bmatrix} B = \begin{bmatrix} a(1)B \\ \cdot \\ \cdot \\ a(n)B \end{bmatrix}$

Thm (Properties of matrix arithmetic) Let A, B, C be matrices. Let a, b be scalars. Assuming that the following operations are defined, then

a.)
$$A + B = B + A$$

b.) $A + (B + C) = (A + B) + C$
c.) $A + 0 = A$
d.) $A + (-A) = 0$
e.) $A(BC) = (AB)C$
f.) $AI = A, IB = B$
g.) $A(B + C) = AB + AC$,
 $(B + C)A = BA + CA$
h.) $a(B + C) = aB + aC$
i.) $(a + b)C = aC + bC$
j.) $(ab)C = a(bC)$
k.) $a(AB) = (aA)B = A(aB)$
l.) $1A = A$ Defn.) $-A = -1A$
Cor.) $A0 = 0, 0B = 0$ Cor.) $a0 = 0$
a.) $(A^T)^T = A$ b.) $(A + B)^T = A^T + B^T$
c.) $(kA)^T = kA^T$ d.) $(AB)^T = B^TA^T$

Note

$$AB \neq BA$$

It is also possible that AB = AC, but $B \neq C$.

In particular it is possible for AB = 0, but $A \neq 0$ AND $B \neq 0$

Defn: A is invertible if there exists a matrix B such that AB = BA = I, and B is called the inverse of A. If the inverse of A does not exist, then A is said to be singular.

Ex: $\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} =$

Defn: A linear transformation is a function $T : \mathbf{R}^n \to \mathbf{R}^m$ that satisfies the following two conditions. For each **u** and **v** in \mathbf{R}^n and scalar a,

i.)
$$T(a\mathbf{u}) = aT(\mathbf{u})$$

ii.)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

Thm: Let $T: V \to W$ be a linear transformation. Then $T(\mathbf{0}) = \mathbf{0}$

Pf: $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0})$

Thm: Let A be an $m \times n$ matrix. Then the function $T : \mathbf{B}^n \to \mathbf{B}^m$

$$T(\mathbf{x}) = A\mathbf{x}$$

is a linear transformation.

Note that if A is invertible, then A is a square matrix.

Thm: If A is invertible, then its inverse is unique.

Proof: Suppose AB = I and CA = I. Then, B = IB = CAB = CI = C.

Prove that $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (4x - 5y, 8) is NOT a linear transformation.

Examples of linear transformations:

Thm 4.3.3: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $T(\mathbf{x}) = A\mathbf{x}$ where $A = [T(\mathbf{e_1})...T(\mathbf{e_n})].$

Proof: Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ x_n \end{bmatrix} = x_1 \mathbf{e_1} + \dots + x_n \mathbf{e_n}.$$

Thus $T(\mathbf{x}) = T(x_1 \mathbf{e_1} + \dots + x_n \mathbf{e_n})$
$$= x_1 T(\mathbf{e_1}) + \dots + x_n T(\mathbf{e_n})$$
$$= [T(\mathbf{e_1}) \dots T(\mathbf{e_n})] \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$

Ex: If $T : \mathbf{R}^2 \to \mathbf{R}$ is a linear transformation and T(1,0) = 3, T(0,1) = 4, then

$$T(x,y) = xT(1,0) + yT(0,1) = 3x + 4y = (3,4) \begin{pmatrix} x \\ y \end{pmatrix}$$

7