Section 1.6: \mathbf{R}^{n}

Thm (Cauchy-Schwarz Inequality): Let \mathbf{u} and $\mathbf{v} \in \mathbf{R}^{n}$. Then

$$
\mathbf{u} \cdot \mathbf{v} \leq\|\mathbf{u}\|\|\mathbf{v}\|
$$

Recall in \mathbf{R}^{2} and in $\mathbf{R}^{3}, \mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$
Thm (Triangle Inequality): Let \mathbf{u} and $\mathbf{v} \in \mathbf{R}^{n}$. Then

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

A matrix is a vector of vectors

Example of a 2×3 matrix:
$\begin{array}{ll}{\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]} & {\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]} \\ {\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]} & {\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]}\end{array}$
Operations on Matrices
$A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(c_{i j}\right)$.
Defn: Two matrices A and B are equal, if they have the same size and $a_{i j}=b_{i j}$ for all $i=1, \ldots, n, j=1, \ldots, m$

Defn: $A+B=\left(a_{i j}+b_{i j}\right)$.

Defn: $c A=\left(c a_{i j}\right)$.

Defn: $-B=(-1) B$.

Defn: $A-B=A+(-B)$.

Defn: The zero matrix $=0=\left(a_{i j}\right)$ where $a_{i j}=0$ for all i, j.

Defn: The identity matrix $=I=\left(a_{i j}\right)$ where $a_{i j}=0$ for all $i \neq j$ and $a_{i i}=1$ for all i and I is a square matrix.

The transpose of the $m \times n$ matrix $A=A^{T}=\left(a_{j i}\right)$.

Suppose A is an $n \times r$ matrix, B is an $r \times n . A B=C$ where

$$
\begin{aligned}
c_{i j} & =\operatorname{row}(i) \text { of } A \cdot \operatorname{column}(j) \text { of } B \\
& =a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i r} b_{r j} .
\end{aligned}
$$

Ex: $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 10 & 1 \\ 0 & 4\end{array}\right]=$

Thm (Properties of matrix arithmetic) Let A, B, C be matrices. Let a, b be scalars. Assuming that the following operations are defined, then
a.) $A+B=B+A$
b.) $A+(B+C)=(A+B)+C$
c.) $A+0=A$
d.) $A+(-A)=0$
e.) $A(B C)=(A B) C$
f.) $A I=A, I B=B$
g.) $A(B+C)=A B+A C$,
. $(B+C) A=B A+C A$
h.) $a(B+C)=a B+a C$
i.) $(a+b) C=a C+b C$
j.) $(a b) C=a(b C)$
k.) $a(A B)=(a A) B=A(a B)$
l.) $1 A=A$

Cor.) $A 0=0,0 B=0$
Defn.) $-A=-1 A$
Cor.) $a 0=0$
a.) $\left(A^{T}\right)^{T}=A$
b.) $(A+B)^{T}=A^{T}+B^{T}$
c.) $(k A)^{T}=k A^{T}$
d.) $(A B)^{T}=B^{T} A^{T}$
i th row of $A B=[i$ th row of $A] B$
In other words $A B=\left[\begin{array}{c}a(1) \\ \cdot \\ \cdot \\ \cdot \\ a(n)\end{array}\right] B=\left[\begin{array}{c}a(1) B \\ \cdot \\ \cdot \\ \cdot \\ a(n) B\end{array}\right]$
j th column of $A B=A[j$ th column of $B]$
In other words $A B=A\left[b_{1} \ldots b_{n}\right]=\left[A b_{1} \ldots A b_{n}\right]$

2

Note

$$
A B \neq B A
$$

It is also possible that $A B=A C$, but $B \neq C$.
In particular it is possible for $A B=0$, but $A \neq 0$ AND $B \neq 0$

Defn: A is invertible if there exists a matrix B such that $A B=B A=I$, and B is called the inverse of A. If the inverse of A does not exist, then A is said to be singular.

Ex: $\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]\left[\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right]=$
Ex: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right][\square=$
Thus $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=$

Note that if A is invertible, then A is a square matrix.
Thm: If A is invertible, then its inverse is unique.
Proof: Suppose $A B=I$ and $C A=I$.
Then, $B=I B=C A B=C I=C$.

Defn: A linear transformation is a function $T: \mathbf{R}^{n} \rightarrow$ \mathbf{R}^{m} that satisfies the following two conditions. For each \mathbf{u} and \mathbf{v} in \mathbf{R}^{n} and scalar a,
i.) $T(a \mathbf{u})=a T(\mathbf{u})$
ii.) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$

Thm: Let $T: V \rightarrow W$ be a linear transformation. Then $T(\mathbf{0})=\mathbf{0}$

Pf: $T(\mathbf{0})=T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})$
Thm: Let A be an $m \times n$ matrix. Then the function

$$
\begin{gathered}
T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \\
T(\mathbf{x})=A \mathbf{x}
\end{gathered}
$$

is a linear transformation.

Prove that $T: R^{3} \rightarrow R^{2}, T(x, y, z)=(4 x-5 y, 8)$ is NOT a linear transformation.

Examples of linear transformations:
Thm 4.3.3: If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then $T(\mathbf{x})=A \mathbf{x}$ where $A=\left[T\left(\mathbf{e}_{\mathbf{1}}\right) \ldots T\left(\mathbf{e}_{\mathbf{n}}\right)\right]$.
Proof: Let $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right]=x_{1} \mathbf{e}_{\mathbf{1}}+\ldots+x_{n} \mathbf{e}_{\mathbf{n}}$.

$$
\text { Thus } \begin{aligned}
T(\mathbf{x}) & =T\left(x_{1} \mathbf{e}_{\mathbf{1}}+\ldots+x_{n} \mathbf{e}_{\mathbf{n}}\right) \\
& =x_{1} T\left(\mathbf{e}_{\mathbf{1}}\right)+\ldots+x_{n} T\left(\mathbf{e}_{\mathbf{n}}\right)
\end{aligned}
$$

$$
=\left[T\left(\mathbf{e}_{\mathbf{1}}\right) \ldots T\left(\mathbf{e}_{\mathbf{n}}\right)\right]\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

Ex: If $T: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a linear transformation and $T(1,0)=3, T(0,1)=4$, then $T(x, y)=$

