%%\input ../../PAPERS/GOLD/psfig \magnification 2400 \vsize 9.5 truein %%\voffset 0.3truein \hoffset -0.3truein \hsize 7.4 truein \nopagenumbers \parskip=10pt \parindent= 0pt \def\u{\vskip 3.3in} \def\v{\vskip 2.2in} \def\w{\vskip 7pt} \def\z{\vskip 1.2in} 2.3 Suppose $c \in {\cal R}$ and suppose \hfil\break $lim_{x \rightarrow a} f(x)$ and $lim_{x \rightarrow a} g(x)$ exist. Then $lim_{x \rightarrow a} [f(x) + g(x)] $ = $lim_{x \rightarrow a} f(x)$ + $lim_{x \rightarrow a} g(x)$ $lim_{x \rightarrow a} [cf(x)] = $ $c ~lim_{x \rightarrow a} f(x)$ $lim_{x \rightarrow a} [f(x)g(x)] = $ $lim_{x \rightarrow a} f(x)$ $lim_{x \rightarrow a} g(x)$ $lim_{x \rightarrow a} {f(x) \over g(x)} = $ ${lim_{x \rightarrow a} f(x) \over lim_{x \rightarrow a} g(x)}$ if $lim_{x \rightarrow a} g(x) \not= 0$ Defn: $f$ is continuous at $a$ \hfil \break iff $lim_{x \rightarrow a} f(x) = f(lim_{x \rightarrow a} x) = $ If $f$ is continuous then \centerline{$lim_{x \rightarrow a} f(g(x)) = f(lim_{x \rightarrow a}g(x))$ } \eject Theorem: If $f(x) \leq g(x)$ near $a$ (except possibly at $a$) and if $lim_{x \rightarrow a} f(x)$ and $lim_{x \rightarrow a} g(x)$ exist, then $$lim_{x \rightarrow a} f(x) \leq lim_{x \rightarrow a} g(x)$$ \vfill Squeeze theorem: \hfil \break If $f(x) \leq g(x) \leq h(x)$ near $a$ (except possibly at $a$) and if $lim_{x \rightarrow a} f(x) = L$ and $lim_{x \rightarrow a} h(x) = L$, then \centerline{$lim_{x \rightarrow a} g(x) = L$} \vfill Example: ~~ $g(x) = x sin{1 \over x} $ %%$-|x| \leq x sin{1 \over x} \leq |x|$ %%, $lim_{x \rightarrow 0} -|x| = 0$, $lim_{x \rightarrow 0} |x| = 0$. %%Hence , $lim_{x \rightarrow 0} x sin{1 \over x} = 0$ %%\vskip 5pt %%\hrule %%\vfill \eject Defn: $lim_{x \rightarrow a} f(x) = L$ if { $x$ close to $a$ (except possibly at $a$) \hfil \break implies $f(x)$ is close to $L$. } \vfill \eject Defn: $lim_{x \rightarrow a} f(x) = L$ if { $x$ close to $a$ (except possibly at $a$) \hfil \break implies $f(x)$ is close to $L$. } \vfill \eject Defn: $lim_{x \rightarrow a} f(x) = L$ if \hfil \break for all $\epsilon > 0$, there exists a $\delta > 0$ such that \hfil \break $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$ Show $lim_{x \rightarrow 1} 2 = $ \vfill \eject Defn: $lim_{x \rightarrow a} f(x) = L$ if \hfil \break for all $\epsilon > 0$, there exists a $\delta > 0$ such that \hfil \break $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$ Show $lim_{x \rightarrow 4} 2x + 3 = $ \vfill \eject Defn: $lim_{x \rightarrow a^-} f(x) = L$ if { $x$ close to $a$ and $x < a$ \hfil \break implies $f(x)$ is close to $L$. } \vfill Defn: $lim_{x \rightarrow a^+} f(x) = L$ if { $x$ close to $a$ and $x > a$ \hfil \break implies $f(x)$ is close to $L$. } \vfill \eject Defn: $lim_{x \rightarrow a} f(x) = \infty$ if { $x$ close to $a$ (except possibly at $a$) \hfil \break implies $f(x)$ is large. } \vfill Defn: $lim_{x \rightarrow a} f(x) = -\infty$ if { $x$ close to $a$ (except possibly at $a$) \hfil \break implies $f(x)$ is negative and $|f(x)|$ is large. } \end