Exam 2 April 13, 2006 Math 25 Calculus I

SHOW ALL WORK

Either circle your answers or place on answer line.

[14] 1.) Given $y = (x^2 + 1)^x$, find y'. Simplify your answer.

Answer 1.) _____

[13] 2.) Given $yx^2 + 10 = y^3$, find y''. You do NOT need to simplify your answer and you can leave your answer in terms of x and y (and only in terms of x and y, y' should not appear in your final answer).

[14] 3.) Calculate the following	ng limit. She	ow all steps

 $\lim_{x \to 0^+} x \ln(x) = \underline{\hspace{1cm}}$

[5] 4a.) State the Mean Value Theorem

[8] 4b.) Use the Mean Value Theorem (or Rolle's theorem) to show $f(x) = \ln(x) + x$ is one-to-one [Hint: recall f is one-to-one if f(a) = f(b) implies a = b. Assume f(a) = f(b) and show a = b WHEN a and b are in the domain of f].

[13] 5.) Two people start at the same point, say the origin. Person A walks east at a constant rate of 1 m/s. Person B walks northeast (45 degrees north of east) at 2 m/s. What
is the rate of change in the distance between person A and person B after 20 seconds [law of cosines: $a^2 = b^2 + c^2 - 2bc \cos(\alpha)$].
Answer 5.)
[12] 6. A how with a gavern hage and open top must have volume of 1000 cm ³ . Find the

[13] 6. A box with a square base and open top must have volume of $1000cm^3$. Find the dimensions of the box that minimizes the amount of material used.

6.) Find the following for $f(x) = \frac{4-x^2}{x^2-9} = \frac{(2-x)(2+x)}{(x-3)(x+3)}$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note
$$f'(x) = \frac{10x}{(x^2-9)^2}$$
 and $f''(x) = \frac{-30(x^2+3)}{(x^2-9)^3}$

- [1.5] 6a.) critical numbers: _____
- [1.5] 6b.) local maximum(s) occur at x =
- [1.5] 6c.) local minimum(s) occur at x =
- [1.5] 6d.) The global maximum of f on the interval [0, 3] is _____ and occurs at x =_____
- [1.5] 6e.) The global minimum of f on the interval [0, 3] is _____ and occurs at x =_____
- [1.5] 6f.) Inflection point(s) occur at x =______
- [1.5] 6g.) f increasing on the intervals _____
- [1.5] 6h.) f decreasing on the intervals _____
- [1.5] 6i.) f is concave up on the intervals _____
- [1.5] 6j.) f is concave down on the intervals_____
- [1.5] 6k.) Equation(s) of vertical asymptote(s)_____
- [4] 6l.) Equation(s) of horizontal and/or slant asymptote(s)_____
- [4.5]6
m.) Graph f