Suppose f integrable (Note f continuous implies f integrable).

If n equal subdivisions:  $\Delta x = \frac{b-a}{n}$  and if we use right-hand endpoints:  $x_i = a + i\Delta x = a + \frac{(b-a)i}{n}$ 

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(a + \frac{(b-a)i}{n}\right) \left(\frac{b-a}{n}\right)$$

Evaluate the limit by recognizing the sum as a Riemann sum for a function defined on [0, 1]

1.) 
$$\lim_{n\to\infty} \sum_{i=1}^n \sin(\frac{i}{n}) \frac{1}{n}$$

2.) 
$$\lim_{n\to\infty}\sum_{i=1}^n \frac{i^5}{n^6}$$

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b].

1.) If 
$$G(x) = \int_{a}^{x} f(t)dt$$
, then  $G'(x) = f(x)$ .

2.)  $\int_a^b f(t)dt = F(b) - F(a)$  where F is any antiderivative of f, that is F' = f.

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b].

1.) If 
$$\frac{d}{dx} \left[ \int_a^x f(t) dt \right] = f(x)$$
.

2.) 
$$\int_a^b F'(t)dt = F(b) - F(a)$$
.

## Examples:

1.) If 
$$G_1(x) = \int_0^x t^2 dt$$
, then  $G'_1(x) = \underline{\hspace{1cm}}$ .

2.) If 
$$G_2(x) = \int_5^x t^2 dt$$
, then  $G'_2(x) = \underline{\hspace{1cm}}$ .

3.) If 
$$G_3(x) = \int_{-2}^x \sin(t^2) dt$$
, then  $G_3'(x) = \underline{\qquad}$ .

4.) If 
$$G_4(x) = \int_4^x \tan(\frac{t^3}{t+1}) dt$$
, then  $G'_4(x) = \underline{\qquad}$ .

5.) If 
$$G_5(x) = \int_1^x \sqrt{3t - 5} dt$$
, then  $G_5'(x) = \underline{\qquad}$ .

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b].

1.) If 
$$G(x) = \int_{a}^{x} f(t)dt$$
, then  $G'(x) = f(x)$ .

Proof

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h},$$

$$= \lim_{h \to 0} \frac{\int_a^{x+h} f(t)dt - \int_a^x f(t)dt}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(t)dt}{h}$$

$$\leq lim_{h\to 0} \frac{\int_x^{x+h} M_h dt}{h}$$

where 
$$M_h = max\{f(t) \mid x \le t \le t + h\}$$

(Note  $M_h$  exists by extreme value thm)

$$\leq lim_{h\to 0} \frac{(M_h)(h)}{h}$$

$$\leq lim_{h\to 0}M_h = f(x)$$

Similarly 
$$G'(x) \ge f(x)$$

(using 
$$m_h = min\{f(t) \mid x \le t \le t + h\}$$

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b].

2.)  $\int_a^b f(t)dt = F(b) - F(a)$  where F is any antiderivative of f, that is F' = f.

Proof

Let  $G(x) = \int_a^x f(t)dt$ . Then G'(x) = f(x) (ie, G is an antiderivative of f).

Let F be any antiderivative of f.

Then  $F(x) = G(x) + C = \int_a^x f(t)dt + C$  for some constant C.

Thus 
$$F(b) - F(a) = G(b) + C - [G(a) + C]$$

$$= G(b) - G(a) = \int_a^b f(t)dt - \int_a^a f(t)dt = \int_a^b f(t)dt.$$

Find the average of 3, 2, 5, 6:

The average value of n values,  $f(t_1), ..., f(t_n)$  is

$$\frac{f(t_1) + f(t_2) + \dots + f(t_n)}{n} = \frac{\sum_{i=1}^n f(t_i)}{n}$$