$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subset V, E^{\prime} \subset E$, and G^{\prime} is a graph.
$G\left[V^{\prime}\right]=\left(E^{\prime}, V^{\prime}\right)$ the subgraph of G induced or spanned by V^{\prime} if $E^{\prime}=\left\{x y \in E \mid x, y \in V^{\prime}\right\}$.
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a spanning subgraph of $G=(V, E)$ if $V^{\prime}=V$.
$G-W=G[V-W], G-E^{\prime}=\left(V, E-E^{\prime}\right), G+x y=(V, E \cup\{x y\})$ where x, y are nonadjacent vertices in V.
$|G|=$ order of $G=|V(G)|=$ number of vertices.
$e(G)=$ size of $G=|E(G)|=$ number of edges.
G^{n} is a graph of order $n, G(n, m)$ is a graph of order n and size m.
$E(U, V)=$ set of $U-V$ edges $=$ set of all edges in $E(G)$ joining a vertex in U to a vertex in V where $U \cap V=\emptyset$.

The complement of $G=(V, E)=\bar{G}=\left(V, V^{(2)}-E\right)$
$K_{n}=$ complete graph on n vertices. $E_{n}=\overline{K_{n}}=$ empty graph with n vertices. $K_{1}=E_{1}$ is trivial.
$\Gamma(x)=\Gamma_{G}(x)=\{y \mid x y \in E(G)\}$.
$d(x)=d_{G}(x)=\operatorname{deg}(x)=$ degree of $x=|\Gamma(x)|$.
$\delta(G)=\min \{d(x) \mid x \in V(G)\}$.
$\Delta(G)=\max \{d(x) \mid x \in V(G)\}$.
v is an isolated vertex if $d(v)=0$.
$\Sigma_{x \in V} d(x)=2 e(G)$.

A walk in a graph, $W=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{n}, v_{n}$, where $v_{i} \in V$ and $e_{i}=v_{i-1} v_{i} \in E$.
length of $W=n$.
trail $=$ walk with distinct edges.
circuit $=$ closed trail.
path $=$ walk with distinct vertices ($=$ trail with distinct vertices).
cycle $=$ circuit with distinct vertices.

A set of vertices (edges) is independent if no two elements in the set are adjacent

A set of paths is independent if no two paths share an interior vertex.
$d(x, y)=$ length of shortest $x-y$ path. If there is no $x-y$ path, then $d(x, y)=\infty$.

A graph is connected if given any pair of distinct vertices, x, y, there is an $x-y$ path.

A component of a graph $=$ a maximal connected subgraph.

A cutvertex $=$ a vertex whose deletion increases the number of components.

A bridge $=$ an edge whose deletion increases the number of components.

A forest $=$ an acyclic graph $=$ a graph without any cycles.

A tree $=$ a connected forest.
$G=(V, E)$ is bipartite if there exists vertex classes, V_{1}, V_{2}, such that $V_{1} \cup V_{2}=V, V_{1} \cap V_{2}=\emptyset$, and $x y \in E, x \in V_{i}$ implies $y \notin V_{i}$ (i.e., no edge joins two vertices in the same class).
$K\left(n_{1}, \ldots, n_{r}\right)=$ complete r-partite graph. $K_{p, q}=K(p, q), K_{r}(t)=K(t, t, \ldots, t)$

Thm 3: Suppose that $C=\left(W, E^{\prime}\right)$ is the component of $G=(V, E)$ containing the vertex x. Then
$W=\{y \in V \mid G$ contains an $x-y$ path $\}=\{y \in V \mid G$ contains an $x-y$ trail $\}$
$=\{y \in V \mid d(x, y)<\infty\}=$ equivalence class of x where we take the smallest equivalence relation on V such that u is equivalent to v if $u v \in E$.

HW p. 28: 1

