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Definition of Code

Block code: all words are the same length.

A q-ary code C of length n is  a set of n-character 

words over an alphabet of q elements. 

Examples:

C1 = {000, 111}  binary code of length 3

C2 = { 00000, 01100, 10110}  binary code of length 

5

C3 = {0000, 0111, 0222, 1012, 1020, 1201, 2021, 

2102, 2210} ternary code of length 4



Error Correcting Code 

• An error is a change in a symbol

• Want to detect and correct up to t errors in a 

code word

• Basic assumptions• Basic assumptions

– If i < j then i errors are more likely than j errors

– Errors occur randomly

– Nearest neighbor decoding

• Decode y to c, where c has fewer differences from y 

than any other codeword 



Hamming Distance

• The Hamming distance between two words  

over the same alphabet is the number of  

places where the symbols differ.

• Example : d(100111, 001110)  = 3• Example : d(100111, 001110)  = 3

– Look at 100111

001110

• For a code , C, the minimum distance d(C) is 

defined by d(C) = min{d(c1,c2),| c1, c2∈C, 

c1≠c2}



Hamming Distance Properties

• Let x and y be any words over  the alphabet 

for C; x and y may or not be codewords.

• d(x, y) = 0 iff x = y

• d(x, y)= d(y, x) for all x, y• d(x, y)= d(y, x) for all x, y

• d(x, y) ≤ d(x, z)  + d(z, y) for all x, y, and z



Detection and Correction

• A code C can detect up to s errors in any 

codeword if d (C) ≥ s + 1

• A code C can correct up to t errors if 

d(C) ≥ 2t + 1d(C) ≥ 2t + 1

– Suppose: c is sent and y is received, d(c,y) ≤ t

and (c’ ≠ c)

– Use triangle inequality

2t +1 ≤ d(c, c’) ≤ d(c, y) + d(y, c’) ≤ t + d(y,c’)



(n, M, d) q-ary code C

• Codewords are n characters long

• d(C) = d

• M codewords

• q characters in alphabet• q characters in alphabet

• Want n as small as possible with d and M as 

large as possible

• These are contradictory goals



Hard Problem

Maximize the number of codewords in a q-ary 

code with given length n and given minimum 

distance d.

We’ll use Latin squares to construct some codes. 



(4, 9, 3) ternary code
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Latin square

• A Latin square of order n is an n x n array in 

which n distinct symbols are arranged so that 

each symbol occurs once in each row and 

column.column.

• Examples:

0 1 2 0 1 2

1 2 0 2 0 1

2 0 1 1 2 0



Orthogonal Latin Squares

• Two distinct Latin squares A = (aij) and B =(bij) 

are orthogonal if the n x n ordered pairs

(aij, bij) are all distinct.

• Example:• Example:

0 1 2 0 1 2 (0,0) (1,1) (2,2)

A = 1 2 0 B = 2 0 1 (1,2) (2,0) (0,1)

2 0 1 1 2 0 (2,1) (0,2) (1,0)



(4, 9, 3) ternary code

constructed from orthogonal Latin squares 
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Theorem

• There exists a q-ary (4, q2, 3) code iff there 

exists a pair of orthogonal Latin squares of 

order q.

• Proof:• Proof:

Look at the following 6 sets 

{(i, j)} {(i, aij)}, {(i, bij)}, {(j, aij)}, {(j, bij)}, {(aij, bij)}



References

• Colbourn, Charles J. and Jeffrey H. Dinitz, Handbook 

of Combinatorial Designs, Second Edition, Chapman 

& Hall/CRC, Boca Raton, FL, 2007 

• Laywine, Charles F. and Gary L. Mullen, Discrete 

Mathematics Using Latin Squares, John Wiley and 

Sons, New York, 1998Sons, New York, 1998

• Pless, Vera, Introduction to the Theory of Error-

Correcting Codes, John Wiley and Sons, New York, 

1982

• Roberts, Fred S. and Barry Tesman, Applied 

Combinatorics, 2nd Edition, Pearson Education, Upper 

Saddle River, NJ , 2005




