Error Correcting Codes

Stanley Ziewacz 22M:151 Spring 2009

Information Transmission

Message	Encoded Sent	Encoded Received	Message
Hello	100 1000	100 1000	
	110 0101	110 0101	Hell~
	110 1100	110 1100	пеп
	110 1100	110 1100	
	110 1111	110 1110	

Information Transmission

Message	Encoded Sent	Encoded Received	Message
	100 1000	100 1000	
Hello	110 0101	110 0101	
	110 1100	110 1100	Hell~
	110 1100	110 1100	
	110 1111	110 1110 🔍	

Error!

Information Transmission with Parity Bit

	Encoded	Encoded	N 4
Message Hello	Sent	Received	Mess
	0100 1000	0100 1000	
	0110 0101	0110 0101	
	0110 1100	0110 1100	He
	0110 1100	0110 1100	
	0110 1111	0110 1110	

I.

Information Transmission with Parity Bit

Error Detected

Definition of Code

Block code: all words are the same length.

A q-ary code C of length n is a set of n-character words over an alphabet of q elements. Examples:

C₁ = {000, 111} binary code of length 3 C₂ = { 00000, 01100, 10110} binary code of length 5

C₃ = {0000, 0111, 0222, 1012, 1020, 1201, 2021, 2102, 2210} ternary code of length 4

Error Correcting Code

- An error is a change in a symbol
- Want to detect and correct up to t errors in a code word
- Basic assumptions
 - If i < j then i errors are more likely than j errors</p>
 - Errors occur randomly
 - Nearest neighbor decoding
 - Decode y to c, where c has fewer differences from y than any other codeword

Hamming Distance

- The Hamming distance between two words over the same alphabet is the number of places where the symbols differ.
- Example : d(100111, 001110) = 3
 - Look at 100111
 - 001110
- For a code , C, the minimum distance d(C) is defined by d(C) = min{d(c₁,c₂), | c₁, c₂∈ C, c₁≠c₂}

Hamming Distance Properties

• Let x and y be any words over the alphabet for C; x and y may or not be codewords.

- d(x, y)= d(y, x) for all x, y
- $d(x, y) \le d(x, z) + d(z, y)$ for all x, y, and z

Detection and Correction

- A code C can detect up to s errors in any codeword if d (C) ≥ s + 1
- A code C can correct up to t errors if d(C) ≥ 2t + 1
 - Suppose: c is sent and y is received, d(c,y) ≤ t
 and (c' ≠ c)
 - Use triangle inequality 2t +1 \leq d(c, c') \leq d(c, y) + d(y, c') \leq t + d(y,c')

(n, M, d) q-ary code C

- Codewords are n characters long
- d(C) = d
- M codewords
- q characters in alphabet
- Want n as small as possible with d and M as large as possible
- These are contradictory goals

Hard Problem

Maximize the number of codewords in a q-ary code with given length n and given minimum distance d.

We'll use Latin squares to construct some codes.

(4, 9, 3) ternary code

Latin square

- A Latin square of order n is an n x n array in which n distinct symbols are arranged so that each symbol occurs once in each row and column.
- Examples:

012	012
120	201
201	120

Orthogonal Latin Squares

- Two distinct Latin squares A = (a_{ij}) and B = (b_{ij}) are orthogonal if the n x n ordered pairs (a_{ij}, b_{ij}) are all distinct.
- Example:

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$ $(0,0) & (1,1) & (2,2) \\ (1,2) & (2,0) & (0,1) \\ (2,1) & (0,2) & (1,0) \end{pmatrix}$

(4, 9, 3) ternary code constructed from orthogonal Latin squares

Theorem

- There exists a q-ary (4, q², 3) code iff there exists a pair of orthogonal Latin squares of order q.
- Proof:

Look at the following 6 sets {(i, j)} {(i, a_{ii})}, {(i, b_{ii})}, {(j, a_{ii})}, {(j, b_{ii})}, {(a_{ii}, b_{ii})}

References

- Colbourn, Charles J. and Jeffrey H. Dinitz, Handbook of Combinatorial Designs, Second Edition, Chapman & Hall/CRC, Boca Raton, FL, 2007
- Laywine, Charles F. and Gary L. Mullen, Discrete Mathematics Using Latin Squares, John Wiley and Sons, New York, 1998
- Pless, Vera, Introduction to the Theory of Error-Correcting Codes, John Wiley and Sons, New York, 1982
- Roberts, Fred S. and Barry Tesman, Applied Combinatorics, 2nd Edition, Pearson Education, Upper Saddle River, NJ, 2005

