Error Correcting Codes

Stanley Ziewacz

22M:151
Spring 2009

Information Transmission

Transmission

Message	Encoded Sent	Encoded Received	Message
	1001000	1001000	Hell ${ }^{\sim}$
Hello	1100101	1100101	
	1101100	1101100	
	1101100	1101100	
	1101111	1101110	

Information Transmission

Information Transmission with Parity Bit

Transmission

Message	Encoded Sent	Encoded Received	Message
	01001000	01001000	Hell ${ }^{\sim}$
Hello	01100101	01100101	
	01101100	01101100	
	01101100	01101100	
	01101111	01101110	

Information Transmission with Parity Bit

Transmission

Message	Encoded Sent	Encoded Received	Message	
	01001000	01001000		
Hello	01100101	01100101		
	01101100	01101100	Hell~ \sim	
	01101100	01101100		
	01101111	01101110		
		Error Detected		

Definition of Code

Block code: all words are the same length.
A q-ary code C of length n is a set of n-character words over an alphabet of q elements.
Examples:
$\mathrm{C}_{1}=\{000,111\}$ binary code of length 3
$C_{2}=\{00000,01100,10110\}$ binary code of length
5
$C_{3}=\{0000,0111,0222,1012,1020,1201,2021$,
$2102,2210\}$ ternary code of length 4

Error Correcting Code

- An error is a change in a symbol
- Want to detect and correct up to t errors in a code word
- Basic assumptions
- If i < j then i errors are more likely than j errors
- Errors occur randomly
- Nearest neighbor decoding
- Decode y to c, where c has fewer differences from y than any other codeword

Hamming Distance

- The Hamming distance between two words over the same alphabet is the number of places where the symbols differ.
- Example : $\mathrm{d}(100111,001110)=3$
- Look at 100111 001110
- For a code , C, the minimum distance $d(C)$ is defined by $d(C)=\min \left\{d\left(c_{1}, c_{2}\right), \mid c_{1}, c_{2} \in C\right.$, $\left.\mathrm{c}_{1} \neq \mathrm{C}_{2}\right\}$

Hamming Distance Properties

- Let x and y be any words over the alphabet for C ; x and y may or not be codewords.
- $d(x, y)=0$ iff $x=y$
- $d(x, y)=d(y, x)$ for all x, y
- $d(x, y) \leq d(x, z)+d(z, y)$ for all x, y, and z

Detection and Correction

- A code C can detect up to s errors in any codeword if $d(C) \geq s+1$
- A code C can correct up to t errors if $d(C) \geq 2 t+1$
- Suppose: c is sent and y is received, $\mathrm{d}(\mathrm{c}, \mathrm{y}) \leq \mathrm{t}$ and ($\mathrm{c}^{\prime} \neq \mathrm{c}$)
- Use triangle inequality

$$
2 t+1 \leq d\left(c, c^{\prime}\right) \leq d(c, y)+d\left(y, c^{\prime}\right) \leq t+d\left(y, c^{\prime}\right)
$$

($\mathrm{n}, \mathrm{M}, \mathrm{d}$) q-ary code C

- Codewords are n characters long
- $d(C)=d$
- M codewords
- q characters in alphabet
- Want n as small as possible with d and M as large as possible
- These are contradictory goals

Hard Problem

Maximize the number of codewords in a q-ary code with given length n and given minimum distance d.

We'll use Latin squares to construct some codes.

$(4,9,3)$ ternary code

0000
0111
0222
1012
1120
1201
2021
2102
2210

Latin square

- A Latin square of order n is an $\mathrm{n} \times \mathrm{n}$ array in which n distinct symbols are arranged so that each symbol occurs once in each row and column.
- Examples:

$$
\begin{array}{lll}
012 & 012 \\
120 & 201 \\
201 & 120
\end{array}
$$

Orthogonal Latin Squares

- Two distinct Latin squares $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ and $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ are orthogonal if the $\mathrm{n} \times \mathrm{n}$ ordered pairs $\left(\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{ij}}\right)$ are all distinct.
- Example:

$$
A=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right) \quad\left(\begin{array}{l}
(0,0)(1,1)(2,2) \\
(1,2)(2,0)(0,1) \\
(2,1)(0,2)(1,0)
\end{array}\right)
$$

$(4,9,3)$ ternary code constructed from orthogonal Latin squares 0000 0111

0222
1012
1120
$\begin{array}{ll}012 & 012 \\ 120 & 201 \\ 201 & 120\end{array}$
1201
2021
2102

2210

Theorem

- There exists a q-ary $\left(4, q^{2}, 3\right)$ code iff there exists a pair of orthogonal Latin squares of order q.
- Proof:

Look at the following 6 sets
$\{(\mathrm{i}, \mathrm{j})\}\left\{\left(\mathrm{i}, \mathrm{a}_{\mathrm{ij}}\right)\right\},\left\{\left(\mathrm{i}, \mathrm{b}_{\mathrm{ij}}\right)\right\},\left\{\left(\mathrm{j}, \mathrm{a}_{\mathrm{ij}}\right)\right\},\left\{\left(\mathrm{j}, \mathrm{b}_{\mathrm{ij}}\right)\right\},\left\{\left(\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{ij}}\right)\right\}$

References

- Colbourn, Charles J. and Jeffrey H. Dinitz, Handbook of Combinatorial Designs, Second Edition, Chapman \& Hall/CRC, Boca Raton, FL, 2007
- Laywine, Charles F. and Gary L. Mullen, Discrete Mathematics Using Latin Squares, John Wiley and Sons, New York, 1998
- Pless, Vera, Introduction to the Theory of ErrorCorrecting Codes, John Wiley and Sons, New York, 1982
- Roberts, Fred S. and Barry Tesman, Applied Combinatorics, $2^{\text {nd }}$ Edition, Pearson Education, Upper Saddle River, NJ , 2005

