Thm 3.2 (Landau). If vertex u has maximum score in a tournament (V, A), then for all $v \in V$, either $(u, v) \in A$ or there exists $w \in V$ such that $(u, w) \in A$ and $(w, v) \in A$.

Or in other works if u has maximum score than for every other player v, either u beats v or u beats another player, w, who beats v.

Proof: Take $v \in V$.
Case 1: If $(u, v) \in A$, then the conclusion holds.
Case 2: Suppose $(u, v) \notin A$. Then we need to find $w \in V$ such that $(u, w) \in A$ and $(w, v) \in A$.

Suppose $s(u)=k$ and $\left\{w_{1}, \ldots, w_{k}\right\}$ is the set of all vertices such that $\left(u, w_{i}\right) \in A$.

We need a j such that $\left(w_{j}, v\right) \in A$.
Proof by contradiction. Assume there does not exist a j such that $\left(w_{j}, v\right) \in A$.

Hence for all $j,\left(w_{j}, v\right) \notin A$.
Since (V, A) is a tournament, $\left(w_{j}, v\right) \notin A$ implies $\left(v, w_{j}\right) \in A$. [Thus $s(v) \geq k]$.

Since (V, A) is a tournament, $(u, v) \notin A$ implies $(v, u) \in A$.
Thus $s(v) \geq k+1>s(u)$.
But this contradicts the hypothesis that u has maximum score.
Hence our assumption is wrong and there does exist a j such that $\left(w_{j}, v\right) \in A$.

