Thm 2.8: An acyclic digraph, D has a unique vertex basis consisting of all vertices with no incoming arcs.

Proof: Let B be the set of all vertices with no incoming arcs. If $v \in B$. Then since v has no incoming arcs, v is only reachable from itself. Thus B must be a subset of any vertex base. Suppose $u \notin B$. Let $u_{1}=u$. Then u_{1} has an incoming $\operatorname{arc}\left(u_{2}, u_{1}\right)$. If $u_{2} \in B$, then u_{1} is reachable from a vertex in B. If $u_{2} \notin B$ then u_{2} has an incoming $\operatorname{arc}\left(u_{3}, u_{2}\right)$.

Suppose the path u_{n}, \ldots, u_{1} is defined such that all vertices are distinct.

If $u_{n} \in B$, then u is reachable from a vertex in B.
If $u_{n} \notin B$ then u_{n} has an incoming arc $\left(u_{n+1}, u_{n}\right)$. If $u_{n+1}=u_{i}$ for some $i=1, \ldots, n$, then $u_{n+1}, u_{n}, \ldots, u_{i}$ is a cycle, a contradiction. Hence all the vertices of $u_{n+1}, u_{n}, \ldots, u_{1}$ are distinct.

Since the number of vertices of D is finite, this process must eventually end, say with the path u_{t}, \ldots, u_{1}. Since we cannot continue this process, u_{t} must not have any incoming arcs. Hence $u_{t} \in B$, and hence u is reachable from a vertex in B. Thus any vertex basis must be contained in B. Hence B is the unique vertex basis of D.

