n-Permutation of n objects: $P(n, n)=n!=$ number of ways to place n nonattacking rooks on an $n \times n$ chessboard.
r-Permutation of n objects: $P(n, r)=n(n-1) \ldots(n-r+1)=$ number of ways to place r nonattacking rooks on an $r \times n$ chessboard, $r \leq n$.
$C(n, r) P(n, r)=\frac{[n(n-1) \ldots(n-r+1)]^{2}}{r!}=$ number of ways to place r nonattacking rooks on an $n \times n$ chessboard, $r \leq n$.

2.4 Permutations of Multisets

Thm 2.4.1: Let $A=\{\infty \cdot 1, \infty \cdot 2, \ldots, \infty \cdot k\}$
The number of r permutations of $A=k^{r}$.
Thm 2.4.2: Let $B=\left\{n_{1} \cdot 1, n_{2} \cdot 2, \ldots, n_{k} \cdot k\right\}$
$n=n_{1}+n_{2}+\ldots+n_{k}$
The number of n-permutations of $B=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$.
If want r-permutations of B, need to use or statements or technique from later chapter.
Combinations: order does NOT matter
$\binom{n}{r}=\#$ of r combinations of $\{1,2, \ldots, n\}$
$=$ subsets of $\{1,2, \ldots, n\}$ containing exactly r elements.
$2^{n}=\Sigma_{i=0}^{n}\binom{n}{i}=\#$ of subsets of $\{1,2, \ldots, n\}$.
Pascal's Triangle: $C(n, r)=C(n-1, r-1)+C(n-1, r)$

2.4 Combinations of Multisets

Let $A=\{\infty \cdot 1, \infty \cdot 2, \ldots, \infty \cdot k\}$
The number of r combinations of $A=\binom{r+k-1}{r}$
$=\#$ of solutions to $x_{1}+x_{2}+\ldots+x_{k}=r$ such that $x_{i} \geq 0, x_{i} \in \mathcal{Z}$
$=\#$ of permutations of $\{r \cdot 1,(k-1) \cdot+\}$
$=$ partitions of r indistinguishable objects into k distinguishable boxes.
if need $x_{i} \geq a_{i}$ replace x_{i} with $y_{i}+a_{i}$ since $y_{i}=x_{i}-a_{i} \geq 0$

