Math 150 Exam 2
November 3, 2006
[10] 1a.) What is the coefficient of $x^{3} y^{2} z^{5}$ in the expansion of $(2 x+y-z)^{10}$:
$\left(2^{3}\right)(-1)^{5}\left(\frac{10!}{3!2!5!}\right)=\frac{-8(10!)}{3!2!5!}$
[6] 1b.) What is the coefficient of $x^{3} y^{2} z^{4}$ in the expansion of $(2 x+y-z)^{10}: \underline{0}$
[84] Choose 4 from the following 5 problems. Circle your choices: A B C D E You may do all 5 problems in which case your unchosen problem can replace your lowest problem at $4 / 5$ the value. Note you must fully explain your answers.
A.) Use Newtons binomial theorem to estimate $\sqrt{5}$ (expand to at least 4 terms).

$$
\begin{aligned}
& \sqrt{5}=(1+4)^{\frac{1}{2}}=2\left(\frac{1}{4}+1\right)^{\frac{1}{2}}=2 \Sigma_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(\frac{1}{4}\right)^{k} \sim 2\left[1+\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)}{2!}\left(\frac{1}{4}\right)^{2}+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)}{3!}\left(\frac{1}{4}\right)^{3}\right] \\
& =2\left[1+\frac{1}{8}-\frac{1}{128}+\frac{1}{16}\left(\frac{1}{64}\right)\right]=2+\frac{1}{4}-\frac{1}{64}+\frac{1}{8}\left(\frac{1}{64}\right)=2+\frac{1}{4}-\frac{1}{64}+\frac{1}{512}
\end{aligned}
$$

B.) Find the number of integers between 1 and 10,000 inclusive that are not divisible by $4,6,10$.

Similar to ch 6: 2
C.) What is the number of ways to place ten nonattacking rooks on the 10 -by- 10 board with forbidden positions as shown?

Note you can number the columns and rows any way you want.
Let $A=\{(1,1),(2,1),(2,2)\}$.
$\operatorname{Let} B=\{(3,3),(4,3)\}$.
Let $r_{1}=$ number of ways to place one rook in a forbidden position $=$ number of forbidden positions $=5$.
if 1 rook in $A: 3$
if 1 rook in $B: 2$
Let $r_{2}=$ number of ways to place two rooks in a forbidden positions: 6
if 2 rooks in $A: 1$
if 1 rook in $A, 1$ in $B: 3+2=5$
if 2 rooks in $B: 0$

Let $r_{3}=$ number of ways to place three rooks in a forbidden positions: 2
if 3 rooks in A : 0
if 2 rooks in $A, 1$ in $B: 2$
if 1 rook in $A, 2$ in $B: 0$
if 3 rooks in B : 0
$r_{i}=0$ for $i>3$

Hence by thm 6.4.1, the number of different assignments is
$10!-r_{1} 9!+r_{2} 8!-r_{3} 7!=10!-5(9!)+6(8!)-2(7!)$
D.) Let R_{n} denote the number of permutations of $X_{n}=\{1,2, \ldots, n\}, n \geq 3$ in which neither the pattern 12 nor the pattern 23 occurs (note there are only 2 restrictions, for example, the pattern 34 may or may not occur). Determine a formula for R_{n} and prove your formula is correct.
$n!-2(n-1)!+(n-2)!$
E.) Consider the partially ordered set $\left(\mathcal{P}\left(X_{2}\right), \subset\right)$ of subsets of $\{1,2\}$ partially ordered by containment. Let a function f in $\mathcal{F}\left(\mathcal{P}\left(X_{2}\right)\right)$ be defined by

$$
f(A, B)= \begin{cases}2 & \text { if } A=B \\ 3 & \text { if } A \subset B, A \neq B \\ 0 & \text { otherwise }\end{cases}
$$

Find the following:
$f^{-1}(\emptyset, \emptyset)=\underline{2} \quad f^{-1}(\emptyset,\{1\})=\underline{3} \quad f^{-1}(\emptyset,\{2\})=\underline{3}$
$f^{-1}(\emptyset,\{1,2\})=\underline{3}$

$$
(f * f)(\emptyset,\{1\})=\underline{\text { section } 6.6}
$$

