Solve $a y^{\prime \prime}+b y^{\prime}+c y=g(t), y(0)=y_{0}, y^{\prime}(0)=y_{1}$
Step 1: Solve homogeneous eqn $a y^{\prime \prime}+b y^{\prime}+c y=0\left(^{* *}\right) \boldsymbol{}$
Step 1a: Guess solution to $\left(^{* *}\right)$: Suppose $y=e^{r t}$
$y=e^{r t}$ implies $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$
$a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$ implies $a r^{2}+b r+c=0$,
Thus $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Let $r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$.
Thus $y=e^{r_{1} t}$ and $y=e^{r_{2} t}$ are both solutions to $\left({ }^{* *}\right)$
We will assume $r_{1} \neq r_{2}$ so that we have two different solutions.

Step 1b: Find general soln to homogeneous eqn (**)
Note that $\left({ }^{* *}\right)$ is a linear equation. Thus since $y=e^{r_{1} t}$ and $y=e^{r_{2} t}$ are both solutions to $(* *)$, $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ is the general solution to $\left(^{* *}\right)$.

Step 2: Solve $a y^{\prime \prime}+b y^{\prime}+c y=g(t)\left(^{*}\right)$
Step 2a: Guess solution to $\left(^{*}\right)$.
Step 2b: Use thm below to form general soln to $\left(^{*}\right)$.
Thm: Suppose $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

If $y(t)=\psi(t)$ is a solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)\left[^{*}\right]
$$

Then $\psi(t)+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to [*].
Step 3: If initial value problem:
Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}):

General solution: $y(t)=\psi(t)+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$
Initial conditions: $y(0)=y_{0}, y^{\prime}(0)=y_{1}$
Solve the following system of eqns for c_{1} and c_{2} :
$y_{0}=\psi(0)+c_{1} \phi_{1}(0)+c_{2} \phi_{2}(0)$
$y_{1}=\psi^{\prime}(0)+c_{1} \phi_{1}^{\prime}(0)+c_{2} \phi_{2}^{\prime}(0)$

