Solve ay'' + by' + cy = g(t), $y(0) = y_0$, $y'(0) = y_1$ **Step 1:** Solve homogeneous eqn ay'' + by' + cy = 0 (**) **Step 1a:** Guess solution to (**): Suppose $y = e^{rt}$ $y = e^{rt}$ implies $y' = re^{rt}$ and $y'' = r^2e^{rt}$ $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ implies $ar^2 + br + c = 0$, Thus $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Let $r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Thus $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are both solutions to (**)

We will assume $r_1 \neq r_2$ so that we have two different solutions.

Step 1b: Find general soln to homogeneous eqn (**)

Note that $(^{**})$ is a linear equation. Thus since $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are both solutions to $(^{**})$, $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ is the general solution to $(^{**})$.

Step 2: Solve ay'' + by' + cy = g(t) (*)

Step 2a: Guess solution to (*).Step 2b: Use thm below to form general soln to (*).

Thm: Suppose $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to

$$ay'' + by' + cy = 0,$$

If $y(t) = \psi(t)$ is a solution to ay'' + by' + cy = g(t) [*],

Then $\psi(t) + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*].

Step 3: If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2):

General solution: $y(t) = \psi(t) + c_1\phi_1(t) + c_2\phi_2(t)$ Initial conditions: $y(0) = y_0, y'(0) = y_1$

Solve the following system of eqns for c_1 and c_2 :

 $y_0 = \psi(0) + c_1\phi_1(0) + c_2\phi_2(0)$ $y_1 = \psi'(0) + c_1\phi'_1(0) + c_2\phi'_2(0)$