5.2: $(x+y)^{n}=\Sigma_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
P.O.: The terms of $(x+y)^{n}$ are of the form $x^{k} y^{n-k}$.

The coefficient of $x^{k} y^{n-k}$
$=$ the number of ways to choose $k x$'s and $(n-k) y$'s
$=$ the number of ways to choose $k x$'s from $n x$'s $=\binom{n}{k}$.
Alternatively,
The coefficient of $x^{k} y^{n-k}$
$=$ the number of ways to choose $k x$'s and $(n-k) y$'s
$=$ the number of permutations of the multiset

$$
\{k \cdot x,(n-k) \cdot y\}=\binom{n}{k}
$$

Obtain other formulas via substitution and algebraic manipulation such as differentiation.

Let $r \in \mathcal{R}, k \in \mathcal{Z}$.
Define $\binom{r}{k}= \begin{cases}\frac{r(r-1) \ldots(r-k+1)}{k!} & \text { if } k \geq 1 \\ 1 & \text { if } k=0 \\ 0 & \text { if } k \leq-1\end{cases}$

Thm 5.3.1: Let n be a positive integer. The sequence of binomial coefficients is a unimodal sequence. In particular
if n is even, $\quad\binom{n}{0}<\binom{n}{1} \ldots<\binom{n}{\frac{n}{2}}$

$$
\binom{n}{\frac{n}{2}}>\ldots>\binom{n}{n-1}>\binom{n}{n}
$$

and if n is odd

$$
\begin{gathered}
\binom{n}{0}<\binom{n}{1} \ldots<\binom{n}{\frac{n-1}{2}}=\binom{n}{\frac{n+1}{2}} \\
\binom{n}{\frac{n+1}{2}}>\ldots>\binom{n}{n-1}>\binom{n}{n}
\end{gathered}
$$

Proof idea: Look at $\frac{\binom{n}{k}}{\binom{n}{k-1}}=\frac{n-k+1}{k}$

5.4: Multinomial thm

Define $\binom{n}{n_{1} n_{2} \ldots n_{t}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{t}!}$
Thm 5.5.1: Let $n \in \mathcal{Z}$. Then

$$
\left(x_{1}+x_{2}+\ldots x_{t}\right)^{n}=\Sigma\binom{n}{n_{1} n_{2} \ldots n_{t}} x_{1}^{n_{1}} x_{2}^{n_{2}}+\ldots x_{t}^{n_{t}}
$$

where the summation extends over all nonnegative integral solutions to $n_{1}+n_{2}+\ldots+n_{t}=n$

5.5: Newton's Binomial Theorem

Let $r \in \mathcal{R}, k \in \mathcal{Z}$.
Define $\binom{r}{k}= \begin{cases}\frac{r(r-1) \ldots(r-k+1)}{k!} & \text { if } k \geq 1 \\ 1 & \text { if } k=0 \\ 0 & \text { if } k \leq-1\end{cases}$
Thm 5.5.1: Let $\alpha \in \mathcal{R}$. Then if $0 \leq|x|<|y|$,

$$
(x+y)^{\alpha}=\Sigma_{k=0}^{\infty}\binom{\alpha}{k} x^{k} y^{\alpha-k}
$$

