6.3 Derangements

Suppose each person in a group of n friends brings a gift to a
party. In how many ways can the n gifts be distributed so that
each person receives one gift and no person receives their own
gift.

Let the set of friends = {p1, ..., pn} Where p; = person j.
Let the set of gifts = {g1,...,9n} where g; = the gift brought
by person j.

Suppose f : {p1, .., Pn} = {91, 9n},

f(pr) = g; iff person py receives give g;, the gift brought by
person j.

If each person receives one gift, then f is a bijection.

If no person receives their own gift. Then f(p;) # g,.

In simpler notation,

f:A{1,....,n} —{1,...,n} such that f(j) #j

Recall:
a permutation on {1, ...,n} is a bijection f : {1,...,n} — {1,...,n}}}

Ex: The permutation 1 2 3 4 5 corresponds to the identity
function.

Ex: The permutation 1 3 2 corresponds to the function

f)=1,f(2) =2, f3) =2

Defn: A derangementof {1,...,n} is a permutation i1s...i,, such
that 7; # j. Le, j is not in the jth place.

In function notation: f(j) = ¢;, then if 1is...3,, is a derange-
ment, f(j) # j.

In yet other wording, recall a permutation corresponds to the
placement of n non-attacking rooks on an n x n chessboard.

Ex: The permutation 1 3 2 corresponds to the following rook
placement:

A derangement corresponds to non-attacking rook placement
with forbidden positions along the diagonal (4, j), for j = 1, ..., n.J]

Ex: If rooks are placed on the following 3 x 3 chessboard in
non-attacking position, then the rook placement corresponds

to a derangement if no rook is placed in a spot marked with an
X.

X X
X X
X X

Thus the derangements of {1,2,3} are 23 1 and 3 1 2.

Let D,, = the number of derangements of {1,...,n}.
Thus D3 = 2.



Thm 6.3.1: For n > 1,Dn:n!(l_%+%_%+._.+(_1)n%)

Pf: Use the inclusion and exclusion principle: If A; C S,
UA; = [S]=X0_ [A;[+3 j[AiNA | —...+(=1)"[A1NA2N...NA,].

Choose S. What can we count which contains the set of de-
rangements?

Let S = the set of permutations of {1,...,n}. Then |S| = nl.

Choose A; such that the set of derangements = UA;.
Let A; = set of permutations such that j is in the jth spot.

|Aj| = (n — 1)! since there is only one choice for the jth spot
(namely j), leaving n — 1 terms to permute in the remaining
n — 1 places.

|A; N A;| = (n — 2)! since there is only one choice for the ith
spot (namely i) and only one choice for the jth spot (namely
j), leaving n— 2 terms to permute in the remaining n —2 places.

Similarly, |4;, N A;, N...NA4; | = (n— k)

Thus Dy, =n! =¥ (n—=1)!+%; j(n—2)! — ...+ (=1)"(n—n)!

::(g)nb—(?>(n—1ﬂ+(g)(n—2ﬂ—”m+(2)(—wnm

=pl-2 4 (D) =1L+ L (- )

n! n!

n

e = number of ways to choose k A;’s.

Recall <

Sidenote: Finding the number of derangements is often called
the hat check problem, because in the old days it was sometimes
stated in the following terms: If n men check their hats, what
is the probability that the hats are returned so that no one
received their own hat.

Recall: If E C S, then the probability of E = P(E) = %

S = sample space, E = events.
Note: we assume each outcome is equally likely.

Suppose 4 customers at a restaurant order 4 meals. What is
the probability that a waiter delivers these 4 orders to the 4
customers so that no customer receives what they ordered?

. Dy 1 _ 11 _1
Answer: T =1l-1+5-5=3

The probability that a permutation of {1,...,n} is a derange-
ment = 2o =1L + 1 4+ 4+ (-1

n! n!

Recall Taylor’s expansion from Calculus I,
f(z) = Z?‘;O%(w — a)’ (under appropriate hypothesis).
Thus e~ ! = E;-”;O(—l)jj—l! (let f(z) =€,z =—1,a=0).

Thus e~ ! is a good approximation for the probability of a de-
rangement for n (slightly) large.

Thus the probability of a derangement is about the same when
n =5 as it is for n = 50000000000.



We can derive a recursive formula for D,, (we will look at many
recursive formulas in chapter 7).

Lemma A: D, = (n —1)(Dy—2 + D,,—1) for n > 3.

Note the above formula is a recursive formula as we can deter-
mine D,, by calculating D for k < n.

Note D; =0, D =1 (as 2 1 is the only derangement of {1,2}).

Thus D3 = 2(0+1) =2,D4 = 3(1+2) =9, D5 = 4(2+9) =44,
etc.

Combinatorial proof of lemma A:
Let D,, = the set of derangements of {1,...,n}.
D,, = the number of derangements of {1,...,n} = |D,|.

We need to show that D,, is a product of n—1 and D,,_o+D,,_1.
If we can partition D,, into n — 1 subsets where each subset has

D, _>+ D, _1 elements, we can use the multiplication principle
to show D,, = (n — 1)(Dyp—2 + Dyp—1).

Let’s focus on one of the positions of a derangement. The last
(nth) position of our derangement can be anything except n.
Thus there are n — 1 choices for the last (nth) position. Note
the factor n — 1 appears in our formula.

Let Ry = the set of derangements of {1, ...,n} where k is in the
nth position for k =1,...,n — 1.

Then D, = U/ R,

Let 7, = |Rg| the number of derangements such that & is in the
nth position.

Note that r; =re = ... = r,,_1 (while r,, = 0).
Then D, =711+ ...+ rp1 =Tp-1+ ... + 11 = (n— 1)rp_1.

Thus we have (hopefully) simplified our problem to showing
that D,,_o+ D,,_1 = r,,_1 = the number of derangements such
that n — 1 is in the nth position.

We need to partition the permutations in R, into two sets,
one with D,,_o elements and the other with D,,_; elements.

We can easily take care of D,,_5. The numbers n — 1 and n
do not appear in any derangement of {1,....n —2}. In R,_1,
n — 1 appears in the last position. We can take a look at the
derangements in R,,_1, such that n appears in the (n — 1)st
position. If we remove the nth and (n — 1)st entries, we obtain
a derangement in D,,_».

Ex: forn =5, 23154 € Ry,—1 — 231 € D,,_».

Thus D,,_o = the number of derangements of R,,_1 (such that
n — 1 is in the nth position and) n is in the (n — 1)st position.

We can now look at the remaining derangements in R,,_; where
n is not in the (n — 1)st position.

Let P, the set of derangement where n—1 is in the nth position
and k is in the (n — 1)st position for some k # n,n — 1 (Le,
k<n-—2).



We would like to show that D,,_; = the number of derange-
ments of {1,...,n— 1} such that n—1 is in the nth position and
k is in the (n — 1)st position for some k < n — 2 = |P,|.

Let D,,_1 = the set of derangements of {1,...,n — 1}.
We would like to create a bijection from P, to D,,_1

Note that the differences between P,, and D,,_;. A derangement
in P, has n terms, while a derangement in D,,_; has n—1 terms.
Thus we need to remove a term to go from P,, to D,,_1.

If i1is...i, € Py, then 7, = n —1 and 4,1 = k for some
kE <n—2. Also i; = n for some j.

In D,,—1, in,—1 = k for some k < n—2 (by definition of derange-
ment of {1,...,n—1}, so we have no problems with the (n—1)st
term.

However, we have the following differences between P,, and
Dn_li

11%9...1, has n terms and

n appears somewhere in iqis...7,,, and

i, = n — 1, so the placement of n — 1 doesn’t vary.

We can fix this by removing the nth term and replacing i; = n
with i =n —1

Let 4175...4,, € P,,. Then 7,, = n —1 and ¢,,_1 = k for some
k<n-—2.

Create ayas...a,,—1, a derangement of {1,...,n — 1} by

let a; — il ifil;én,lglgn—l
Y In-1 ifi;=n

Ex: For n =5, 25314 € |P,,| — 2431 € |D,,_1].

This gives us a bijection between P,, and D,,_;. Thus D,,_1 =

|Pn-

Another (simpler) recurrance relation:

Lemma B: D,, =nD,_1 4+ (—1)" for n > 2

Proof by induction on n.

n =2: Dy =1 (use definition or Thm 6.3.1)

9D; + (—1)2 =2(0) +1 = 1.

Thus D,, = nD,,_1 + (—1)™ holds for n = 2.
Suppose Dy_1 = (k — 1)Dj_o + (=1)*~! for k < n
By lemma A, Dy, = (k—1)Dg_2 + (k — 1)Dj_4

By the induction hypothesis, Dy_1 = (k — 1)Dj_o + (—1)F1,
Thus (ki — 1)D;€_2 =Dp_1— (—1)k_1

Thus Dy, = Dy—1—(=1)* "+ (k=1)Dy—1 = kD1 +(=1)(-1)*"* =}
kDyp_1 + (—1)k

6.4 Permutations with Forbidden Positions

Goal: To derive a more general formula for counting the num-
ber of permutations with arbitrary forbidden positions.

Recall in section 6.3, we looked at permutations with forbid-



den positions A derangement corresponds to non-attacking rook
placement with forbidden positions along the diagonal (7, 7), for
j = 1,....,n. In this section, we will cover arbitrary forbidden
positions.

Let X; C{l,..,n} for j=1,...,n.

Defn: P(X1, Xs,...,X,) = the set of permutations i;is...7, of
{1, ,n} such that ij € Xj.

Defn: p(Xl,XQ,...,Xn) = |P(X1,X2,...,Xn)|

Ex: P(Xy,Xs,...,X,,) corresponds to the set of derangements
of {1,...,n}if X; = {j}. Thus D,, = |P({1},{2},..., {n}|

Recall, we can visualize permutations with forbidden positions
via n X n chessboards.
X X

Ex: Derangements of {1,2,3} : X X
Xj =17}
X X

Non-derangement example:
n=4,X;={j,j+1},j=1,2,3, X4 = 0.

X X X X
XX XX XX XX
XX XX X XX
X X

X
X

P(X1,Xs,....,X,) = P({1,2},{2,3},{3,4},0)
= {3124, 3412, 3421,4123}.

p(Xl,Xg, ceey Xn) = p({l, 2}, {2, 3}, {3, 4}, (Z))
= [{3124, 3412, 3421, 4123}| = 4.

We can use the inclusion-exclusion principle to calculate
p(X1, Xo, ..., X;,) (although in many cases, the computation can
be tediously long and beyond computer capabilities for large n).

Similar to the proof of Thm 6.3.1. By the inclusion-exclusion
principle,

p(Xl,XQ, ceey Xn) = |S|—E§L:1|Aj|—|—21-,j
AN N A

AiNAjl—..+(=1)" AN}

where
Let S = the set of permutations of {1,...,n}. Then |S| = n!.

Let A; = set of permutations 41%s...i, such that i; € X; (for a
fixed j).

Note there are |X;| ways to place a rook in the jth position.
There are (n — 1)! ways to place the remaining n — 1 rooks so
that the permutation belongs to A;.

Thus |4,| = |X,|(n — 1)
ilA; ] = 7 [XG|(n — D! = (n = DIZFL[XG] = ri(n — 1)
where ry = X7_, [ X;].

Note 1 = number of ways to place 1 nonattacking rooks on an
n X n chessboard so that the rook is in a forbidden position.

Let’s now look at A; N Ag. 4192...0, € A; N Ay, then i; € X
and iy € Xi. Thus there are | X ;| ways to place a rook in the



jth position and | X} | ways to place a rook in the kth position.
There are (n — 2)! ways to place the remaining n — 1 rooks so
that the permutation belongs to A; N Ay.

Thus |A; N Ay = | X;]|Xe](n — 2)L.
il AN Aj] = 5 5 X[ Xk[(n—2)! = (n—2)1%; ;| X;|| Xk|. Let
T2 = X4 j| X || Xk

Note ro = number of ways to place 2 nonattacking rooks on an
n X n chessboard so that each of the 2 rooks is in a forbidden
position.

Similarly, define rx = number of ways to place k£ nonattacking
rooks on an n x n chessboard so that each of the k rooks is in
a forbidden position.

Then 2|A11 N AiQ N...N A1k| = T‘k(k - 1)'
Thus we have proved:

Thm 6.4.1: p(X1, Xo,.... Xp,) =nl —ri(n— D!+ ro(n —2)! —
(=),

Note that if there are many forbidden positions, then rx may be
difficult to calculate and it may be easier to calculate p(X7, Xo, ..., X},)
directly. If there are few forbidden positions, Thm 6.4.1 is the
easier method to compute p(X7, Xs, ..., X,,).

Examples:
Let X ={1,2,3}. p({1,2},{1,3},{3}| =

Note in this case, it was easiest to count directly and not use

Thm 6.4.1.
Examples:
Let X ={1,2,3,4,5}. p({1,2},{1,3},{3}| =

6.5 Another Forbidden Position Problem

Goal: To derive a formula for counting the number of permu-
tations with relative forbidden positions.

Ex: Suppose children 1, 2, 3, 4, and 5 sit in a row in class.
Children 1 and 2 cannot sit next to each other or they will
cause trouble.

The order in which the children sit corresponds to a permuta-
tion of {1,2,3,4,5}. If 1 is in the ith spot, then 2 cannot be
in the ¢ — 1st spot or the ¢ + 1th spot. Thus the pattern 21
or 12 cannot appear in our permutation. This is called a rel-
ative forbidden position as certain positions for the placement
of 2 are forbidden, but these forbidden positions depend on the
placement of 1.

We will focus on the relative forbidden position problem in
which

Let @, = the number of permutations of {1,2,...,n} in which
none of the patterns 12, 23, 34, ..., (n — 1)n occurs.

Thm 6.5.1 Q, — n! — (nIl)(n—l)!—l—(n;l)(n—Q)!—

o (Z:}) (—1)m111



Proof: Use inclusion-exclusion principle.

Let S = the set of permutations of {1,...,n}. Then |S| = n!.
Let A; = set of permutations which contain the pattern j(j+1).
Note: |4;| = (n —1)!

|A; N Aj| = (n—2)!

|Ai1 N Aig N...N A’Lk’ == (n - ki)'



