
6.3 Derangements

Suppose each person in a group of n friends brings a gift to a
party. In how many ways can the n gifts be distributed so that
each person receives one gift and no person receives their own
gift.

Let the set of friends = {p1, ..., pn} where pj = person j.
Let the set of gifts = {g1, ..., gn} where gj = the gift brought
by person j.

Suppose f : {p1, ..., pn} → {g1, ..., gn},
f(pk) = gj iff person pk receives give gj , the gift brought by
person j.
If each person receives one gift, then f is a bijection.
If no person receives their own gift. Then f(pj) 6= gj .

In simpler notation,
f : {1, ..., n} → {1, ..., n} such that f(j) 6= j

Recall:
a permutation on {1, ..., n} is a bijection f : {1, ..., n} → {1, ..., n}

Ex: The permutation 1 2 3 4 5 corresponds to the identity
function.

Ex: The permutation 1 3 2 corresponds to the function
f(1) = 1, f(2) = 2, f(3) = 2



Defn: A derangement of {1, ..., n} is a permutation i1i2...in such
that ij 6= j. I.e, j is not in the jth place.

In function notation: f(j) = ij , then if i1i2...in is a derange-
ment, f(j) 6= j.

In yet other wording, recall a permutation corresponds to the
placement of n non-attacking rooks on an n × n chessboard.

Ex: The permutation 1 3 2 corresponds to the following rook
placement:

A derangement corresponds to non-attacking rook placement
with forbidden positions along the diagonal (j, j), for j = 1, ..., n.

Ex: If rooks are placed on the following 3 × 3 chessboard in
non-attacking position, then the rook placement corresponds
to a derangement if no rook is placed in a spot marked with an
X.

Thus the derangements of {1, 2, 3} are 2 3 1 and 3 1 2.

Let Dn = the number of derangements of {1, ..., n}.
Thus D3 = 2.



Thm 6.3.1: For n ≥ 1, Dn = n!(1− 1
1! + 1

2! −
1
3! + ...+ (−1)n 1

n! )

Pf: Use the inclusion and exclusion principle: If Ai ⊂ S,
∪Ai = |S|−Σn

j=1|Aj |+Σi,j |Ai∩Aj |−...+(−1)n|A1∩A2∩...∩An|.

Choose S. What can we count which contains the set of de-
rangements?

Let S = the set of permutations of {1, ..., n}. Then |S| = n!.

Choose Aj such that the set of derangements = ∪Aj .
Let Aj = set of permutations such that j is in the jth spot.

|Aj | = (n − 1)! since there is only one choice for the jth spot
(namely j), leaving n − 1 terms to permute in the remaining
n − 1 places.

|Ai ∩ Aj | = (n − 2)! since there is only one choice for the ith
spot (namely i) and only one choice for the jth spot (namely
j), leaving n−2 terms to permute in the remaining n−2 places.

Similarly, |Ai1 ∩ Ai2 ∩ ... ∩ Aik
| = (n − k)!.

Thus Dn = n!−Σn
j=1(n−1)!+Σi,j(n−2)!− ...+(−1)n(n−n)!

=
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= n!− n!
1! + n!

2! + ... + (−1)n n!
n! = n!(1− 1

1! + 1
2! + ... + (−1)n 1

n! )

Recall

(

n

k

)

= number of ways to choose k Ai’s.



Sidenote: Finding the number of derangements is often called
the hat check problem, because in the old days it was sometimes
stated in the following terms: If n men check their hats, what
is the probability that the hats are returned so that no one
received their own hat.

Recall: If E ⊂ S, then the probability of E = P (E) = |E|
|S|

S = sample space, E = events.

Note: we assume each outcome is equally likely.

Suppose 4 customers at a restaurant order 4 meals. What is
the probability that a waiter delivers these 4 orders to the 4
customers so that no customer receives what they ordered?

Answer: D4

4! = 1 − 1 + 1
2 − 1

6 = 1
3

The probability that a permutation of {1, ..., n} is a derange-
ment = Dn

n! = 1 − 1
1! + 1

2! + ... + (−1)n 1
n!

Recall Taylor’s expansion from Calculus I,

f(x) = Σ∞
j=0(−1)j f(n)(a)

j! .

Thus e−1 = Σ∞
j=0(−1)j 1

j! .

Thus e−1 is a good approximation for the probability of a de-
rangement for n (slightly) large.

Thus the probability of a derangement is about the same when
n = 5 as it is for n = 50000000000.

We can derive a recursive formula for Dn (we will look at many



recursive formulas in chapter 7).

Lemma A: Dn = (n − 1)(Dn−2 + Dn−1) for n ≥ 3.

Note the above formula is a recursive formula as we can deter-
mine Dn by calculating Dk for k < n.

Note D1 = 0, D2 = 1 (as 2 1 is the only derangement of {1, 2}).

Thus D3 = 2(0+1) = 2, D4 = 3(1+2) = 9, D5 = 4(2+9) = 44,
etc.

Combinatorial proof of lemma A:

Let Dn = the set of derangements of {1, ..., n}.

Dn = the number of derangements of {1, ..., n} = |Dn|.

We need to show that Dn is a product of n−1 and Dn−2+Dn−1.
If we can partition Dn into n− 1 subsets where each subset has
Dn−2 + Dn−1 elements, we can use the multiplication principle
to show Dn = (n − 1)(Dn−2 + Dn−1).

Let’s focus on one of the positions of a derangement. The last
(nth) position of our derangement can be anything except n.
Thus there are n − 1 choices for the last (nth) position. Note
the factor n − 1 appears in our formula.

Let Rk = the set of derangements of {1, ..., n} where k is in the
nth position for k = 1, ..., n − 1.

Then Dn = ∪n−1
j=0Rn



Let rk = |Rk| the number of derangements such that k is in the
nth position.

Note that r1 = r2 = ... = rn−1 (while rn = 0).

Then Dn = r1 + ... + rn−1 = rn−1 + ... + rn−1 = (n − 1)rn−1.

Thus we have (hopefully) simplified our problem to showing
that Dn−2 + Dn−1 = rn−1 = the number of derangements such
that n − 1 is in the nth position.

We need to partition the permutations in Rn−1 into two sets,
one with Dn−2 elements and the other with Dn−1 elements.

We can easily take care of Dn−2. The numbers n − 1 and n

do not appear in any derangement of {1, ..., n − 2}. In Rn−1,
n − 1 appears in the last position. We can take a look at the
derangements in Rn−1, such that n appears in the (n − 1)st
position. If we remove the nth and (n− 1)st entries, we obtain
a derangement in Dn−2.

Ex: for n = 5, 23154 ∈ Rn−1 → 231 ∈ Dn−2.

Thus Dn−2 = the number of derangements of Rn−1 (such that
n − 1 is in the nth position and) n is in the (n − 1)st position.

We can now look at the remaining derangements in Rn−1 where
n is not in the (n − 1)st position.

Let Pn the set of derangement where n−1 is in the nth position
and k is in the (n − 1)st position for some k 6= n, n − 1 (I.e,
k ≤ n − 2).



We would like to show that Dn−1 = the number of derange-
ments of {1, ..., n−1} such that n−1 is in the nth position and
k is in the (n − 1)st position for some k ≤ n − 2 = |Pn|.

Let Dn−1 = the set of derangements of {1, ..., n − 1}.

We would like to create a bijection from Pn to Dn−1

Note that the differences between Pn and Dn−1. A derangement
in Pn has n terms, while a derangement in Dn−1 has n−1 terms.
Thus we need to remove a term to go from Pn to Dn−1.

If i1i2...in ∈ Pn, then in = n − 1 and in−1 = k for some
k ≤ n − 2. Also ij = n for some j.

In Dn−1, in−1 = k for some k ≤ n−2 (by definition of derange-
ment of {1, ..., n−1}, so we have no problems with the (n−1)st
term.

However, we have the following differences between Pn and
Dn−1:
i1i2...in has n terms and
n appears somewhere in i1i2...in, and
in = n − 1, so the placement of n − 1 doesn’t vary.
We can fix this by removing the nth term and replacing ij = n

with ij = n − 1

Let i1i2...in ∈ Pn. Then in = n − 1 and in−1 = k for some
k ≤ n − 2.

Create a1a2...an−1, a derangement of {1, ..., n − 1} by



let al =

{

il if il 6= n, 1 ≤ l ≤ n − 1
n − 1 if il = n

Ex: For n = 5, 25314 ∈ |Pn| → 2431 ∈ |Dn−1|.

This gives us a bijection between Pn and Dn−1. Thus Dn−1 =
|Pn|.

Another (simpler) recurrance relation:

Lemma B: Dn = nDn−1 + (−1)n for n ≥ 2

Proof by induction on n.

n = 2: D2 = 1 (use definition or Thm 6.3.1)
2D1 + (−1)2 = 2(0) + 1 = 1.
Thus Dn = nDn−1 + (−1)n holds for n = 2.

Suppose Dk−1 = (k − 1)Dk−2 + (−1)k−1 for k < n

By lemma A, Dk = (k − 1)Dk−2 + (k − 1)Dk−1

By the induction hypothesis, Dk−1 = (k − 1)Dk−2 + (−1)k−1.
Thus (k − 1)Dk−2 = Dk−1 − (−1)k−1

Thus Dk = Dk−1−(−1)k−1+(k−1)Dk−1 = kDk−1+(−1)(−1)k−1 =
kDk−1 + (−1)k

6.4 Permutations with Forbidden Positions

Goal: To derive a more general formula for counting the num-
ber of permutations with arbitrary forbidden positions.

Recall in section 6.3, we looked at permutations with forbid-



den positions A derangement corresponds to non-attacking rook
placement with forbidden positions along the diagonal (j, j), for
j = 1, ..., n. In this section, we will cover arbitrary forbidden
positions.

Let Xj ⊂ {1, ..., n} for j = 1, ..., n.

Defn: P (X1, X2, ..., Xn) = the set of permutations i1i2...in of
{1, ..., n} such that ij 6∈ Xj .

Defn: p(X1, X2, ..., Xn) = |P (X1, X2, ..., Xn)|

Ex: P (X1, X2, ..., Xn) corresponds to the set of derangements
of {1, ..., n} if Xj = {j}. Thus Dn = |P ({1}, {2}, ..., {n}|

Recall, we can visualize permutations with forbidden positions
via n × n chessboards.

Ex: Derangements of {1, 2, 3} :
Xj = {j}.

Non-derangement example:
n = 4, Xi = {j, j + 1}, j = 1, 2, 3, X4 = ∅.

P (X1, X2, ..., Xn) = P ({1, 2}, {2, 3}, {3, 4}, ∅)
= {3124, 3412, 3421, 4123}.



p(X1, X2, ..., Xn) = p({1, 2}, {2, 3}, {3, 4}, ∅)
= |{3124, 3412, 3421, 4123}| = 4.

We can use the inclusion-exclusion principle to calculate
p(X1, X2, ..., Xn) (although in many cases, the computation can
be tediously long and beyond computer capabilities for large n).

Similar to the proof of Thm 6.3.1. By the inclusion-exclusion
principle,

p(X1, X2, ..., Xn) = |S|−Σn
j=1|Aj |+Σi,j |Ai∩Aj |−...+(−1)n|A1∩

A2 ∩ ... ∩ An|

where

Let S = the set of permutations of {1, ..., n}. Then |S| = n!.

Let Aj = set of permutations i1i2...in such that ij ∈ Xj (for a
fixed j).

Note there are |Xj| ways to place a rook in the jth position.
There are (n − 1)! ways to place the remaining n − 1 rooks so
that the permutation belongs to Aj .

Thus |Aj | = |Xj |(n − 1)!.
Σn

j=1|Aj | = Σn
j=1|Xj |(n − 1)! = (n − 1)!Σn

j=1|Xj | = r1(n − 1)!
where r1 = Σn

j=1|Xj|.

Note r1 = number of ways to place 1 nonattacking rooks on an
n × n chessboard so that the rook is in a forbidden position.

Let’s now look at Aj ∩ Ak. i1i2...in ∈ Aj ∩ Ak, then ij ∈ Xj

and ik ∈ Xk. Thus there are |Xj | ways to place a rook in the



jth position and |Xk| ways to place a rook in the kth position.
There are (n − 2)! ways to place the remaining n − 1 rooks so
that the permutation belongs to Aj ∩ Ak.

Thus |Aj ∩ Ak| = |Xj ||Xk|(n − 2)!.
Σi,j |Ai ∩Aj | = Σi,j |Xj ||Xk|(n−2)! = (n−2)!Σi,j |Xj ||Xk|. Let
r2 = Σi,j |Xj ||Xk|.

Note r2 = number of ways to place 2 nonattacking rooks on an
n × n chessboard so that each of the 2 rooks is in a forbidden
position.

Similarly, define rk = number of ways to place k nonattacking
rooks on an n × n chessboard so that each of the k rooks is in
a forbidden position.

Then Σ|Ai1 ∩ Ai2 ∩ ... ∩ Aik
| = rk(k − 1)!.

Thus we have proved:

Thm 6.4.1: p(X1, X2, ..., Xn) = n! − r1(n − 1)! + r2(n − 2)! −
... + (−1)nrn.

Note that if there are many forbidden positions, then rk may be
difficult to calculate and it may be easier to calculate p(X1, X2, ..., Xn)
directly. If there are few forbidden positions, Thm 6.4.1 is the
easier method to compute p(X1, X2, ..., Xn).

Examples:

Let X = {1, 2, 3}. p({1, 2}, {1, 3}, {3}| =

Note in this case, it was easiest to count directly and not use



Thm 6.4.1.

Examples:

Let X = {1, 2, 3, 4, 5}. p({1, 2}, {1, 3}, {3}| =

6.5 Another Forbidden Position Problem

Goal: To derive a formula for counting the number of permu-
tations with relative forbidden positions.

Ex: Suppose children 1, 2, 3, 4, and 5 sit in a row in class.
Children 1 and 2 cannot sit next to each other or they will
cause trouble.

The order in which the children sit corresponds to a permuta-
tion of {1, 2, 3, 4, 5}. If 1 is in the ith spot, then 2 cannot be
in the i − 1st spot or the i + 1th spot. Thus the pattern 21
or 12 cannot appear in our permutation. This is called a rel-
ative forbidden position as certain positions for the placement
of 2 are forbidden, but these forbidden positions depend on the
placement of 1.

We will focus on the relative forbidden position problem in
which

Let Qn = the number of permutations of {1, 2, ..., n} in which
none of the patterns 12, 23, 34, ..., (n − 1)n occurs.

Thm 6.5.1 Qn = n! −

(

n − 1
1

)

(n − 1)! +

(

n − 1
2

)

(n − 2)! −

... +

(

n − 1
n − 1

)

(−1)n−11!



Proof: Use inclusion-exclusion principle.

Let S = the set of permutations of {1, ..., n}. Then |S| = n!.

Let Aj = set of permutations which contain the pattern j(j+1).

Note: |Aj | = (n − 1)!

|Ai ∩ Aj | = (n − 2)!

|Ai1 ∩ Ai2 ∩ ... ∩ Aik
| = (n − k)!.


