Math 150 Exam 2 October 28, 2015 Form C

[3] 1.) In the expansion of $(2x + 5y - z - 1)^{10}$, the coefficient of $x^4y^3z^5$ is 0.

[5] In the expansion of $(2x + 5y - z - 1)^{10}$, the coefficient of x^2yz is $-\frac{10(10!)}{6!}$.

 $\frac{10!}{2!1!1!6!}(2x)^2(5y)(-z)(-1)^6 = -\frac{10(10!)}{6!}x^2yz$

[13] 2.) Let $S = \{x_6, x_5, x_4, x_3, x_2, x_1, x_0\}.$

What subset of S corresponds to 1101101? $\{x_6, x_5, x_3, x_2, x_0\}$

 $1101101 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0$

What subset comes before the subset $\{x_4\}$? $\{x_3, x_2, x_1, x_0\}$

 $\{x_4\}$ corresponds to 2^4 and $2^4 = 10000$.

 $\frac{10000}{-1}$ $\frac{-1}{01111}$

What subset comes after the subset $\{x_4\}$? $\{x_4, x_0\}$

 $\begin{array}{r}
 10000 \\
 + 1 \\
 \overline{10001}
\end{array}$

[10] 3.) How many permutations of $\{1, 2, 3, 4, 5, 6, 7\}$

A permutation corresponds to inversion sequence $a_1, ..., a_7$ where a_i are non-negative integers and $a_1 \leq 6$, $a_2 \leq 5$, $a_3 \leq 4$, $a_4 \leq 3$, $a_5 \leq 2$, $a_6 \leq 1$, $a_7 = 0$.

6 + 5 + 4 + 3 + 2 + 1 + 0 = 21

[4] a.) have exactly 20 inversions? 6

The	only	inversion	sequences containin	m g~20 :	inversions	are				
5, 5, 5	, 4, 3,	2,1,0	6, 4,	4, 3,	2,1,0	6,	5, 3	, 3,	2, 1	Ι, Ο
6, 5,	, 4, 2,	2, 1, 0	6, 5,	4, 3,	1, 1, 0	6,	5, 4	a, 3, a	2, (), 0

[3] a.) have exactly 21 inversions? 1

The only inversion sequence containing 21 inversions is 6, 5, 4, 3, 2, 1, 0

[3] a.) have exactly 22 inversions? 0

[9] 4.) Draw the Hasse Diagram for the inversion poset (X_3, \leq) where $X_3 =$ the set of permutations of $\{1, 2, 3\}$ and if π and σ are two permutations in X_3 , then $\pi \leq \sigma$ if the set of inversions of π is a subset of the set of inversions of σ .

2pts Extra credit: Prove that $r(3,3) \ge 6$ (Note this problem is not the same as 6A).

The above coloring of K_5 shows there exists a coloring of K_5 that does not contain a red K_3 or a blue K_3 . Thus r(3,3) > 5

[20] 5.) State the definition of equivalence relation:

An equivalence relation on X is a relation (i.e., a subset of $X \times X$) that is reflexive, symmetric, transitive.

Use the definition of equivalence relation to show the ~ is an equivalence relation on \mathbb{Z} where $n \sim k$ iff $\frac{n-k}{4} \in \mathbb{Z}$

Claim: \cong_p is reflexive. That is, $\forall x \in X, x \sim x$.

 $\frac{x-x}{4} = 0 \in \mathbb{Z}$. Thus $x \sim x$.

Claim: \cong_p is symmetric. I.e., if $x \sim y$, then $y \sim x$.

Suppose $x \sim y$. Then $\frac{x-y}{4} \in \mathbb{Z}$. Thus $\frac{y-x}{4} = -\frac{x-y}{4} \in \mathbb{Z}$ since the negative of an integer is an integer. Hence $y \sim x$.

Claim: \cong_p is transitive. I.e., if $x \sim y$ and $y \sim z$, then $x \sim z$.

Suppose $x \sim y$ and $y \sim z$. Then $\frac{x-y}{4} \in \mathbb{Z}$ and $\frac{y-z}{4} \in \mathbb{Z}$.

Thus $\frac{x-z}{4} = \frac{x-y}{4} + \frac{y-z}{4} \in \mathbb{Z}$ since the sum of two integers is an integer.

Thus \sim is an equivalence relation.

What are the equivalence classes of \mathbb{Z} with respect to \sim ?

 $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\} = \text{the set containing all multiples of 4}.$

 $[1]=\{...,-7,-3,1,5,9,...\}=$ the set of numbers whose remainder is 1 when divided by 4.

 $[2]=\{...,-6,-2,2,6,10,...\}=$ the set of numbers whose remainder is 2 when divided by 4.

 $[3] = \{\dots, -5, -1, 3, 7, 11, \dots\}$ = the set of numbers whose remainder is 3 when divided by 4.

Partition \mathbb{Z} into its equivalence classes (I.e., write \mathbb{Z} as the disjoint union of sets where the sets correspond to equivalence classes.

$$\mathbb{Z} = [0] \cup [1] \cup [2] \cup [3]$$

[40] 6.) Choose 2 from the following 3 problems. Circle your choices: A B C You may do all 3 problems in which case your unchosen problem can replace your lowest scoring problem at 4/5 the value (or more) as discussed in class.

Note: If you do not CLEARLY indicate your 2 choices, I will assume that you chose the first two problems.

6A.) Prove that $r(3,3) \leq 6$. State where you use the Pigeon-hole principle and whether you use the weak form or the strong form.

Method 1: Proof by contradiction: Suppose r(3,3) > 6.

Then there exists a coloring of K_6 that contains neither a red triangle nor a blue triangle.

Let v be a vertex of K_6 . Let us consider the set of red edges that have v as an endpoint and the set of blue edges that have v as an endpoint. The number of edges that have vas an endpoint is 5. Thus by the pigeon-hole principle (strong-form) of these 5 edges, either 3 are red or 3 are blue.

WLOG (without loss of generality) assume there exists 3 red edges, $\{v, v_1\}, \{v, v_2\}$, and $\{v, v_3\}$.

Consider the edges $\{v_1, v_2\}, \{v_1, v_3\}, \text{ and } \{v_2, v_3\}.$

Suppose one of these edges, $\{v_i, v_j\}$ is colored red. Then $\{v, v_i\}$, $\{v, v_j\}$, $\{v_i, v_j\}$ is a red triangle. But our coloring does not have a red K_3 .

Thus none of the edges $\{v_1, v_2\}$, $\{v_1, v_3\}$, and $\{v_2, v_3\}$ can be colored red.

Thus $\{v_1, v_2\}$, $\{v_1, v_3\}$, and $\{v_2, v_3\}$ are all colored blue. But then $\{v_1, v_2\}$, $\{v_1, v_3\}$, and $\{v_2, v_3\}$ is a blue triangle, a contridiction.

Thus there does not exist a coloring of K_6 that contains neither a red triangle nor a blue triangle.

Thus our assumption that r(3,3) > 6 is incorrect. Hend $r(3,3) \le 6$.

If you are not required to use the pigeonhole principle, then two alternate proofs:

Method 2:
$$r(s,t) \le r(s-1,t) + r(s,t-1)$$
 and $r(s,2) = r(2,s) = s$.

Thus
$$r(3,3) \le r(2,3) + r(3,2) = 3 + 3 = 6$$

Method 3:
$$r(s,t) \le \binom{s+t-2}{s-1}$$
. Thus $r(3,3) \le \binom{3+3-2}{3-1} = \binom{4}{2} = \frac{4!}{2!2!} = 6$.

6B.) Use a combinatorial argument to prove the Vandermonde convolution for the binomial coefficients: For all positive integers m_1, m_2, n ,

$$\sum_{k=0}^{n} \binom{m_1}{k} \binom{m_2}{n-k} = \binom{m_1+m_2}{n}$$

See answers to HW ch 5 #25 posted under content on ICON

6C.) State Newton's binomial theorem for expanding $(x + y)^{\alpha}$ where $\alpha \in \mathbb{R}$. Let $\alpha \in \mathcal{R}$. Then if $0 \le |x| < |y|$,

$$(x+y)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k y^{\alpha-k}$$

where
$$\begin{pmatrix} \alpha \\ k \end{pmatrix} = \begin{cases} \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} & \text{if } k \ge 1\\ 1 & \text{if } k = 0\\ 0 & \text{if } k \le -1 \end{cases}$$

Use this theorem to algebraically derive the formula: $\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$ when |z| < 1.

Hint: Let $\alpha = -1$. You may use the fact that $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$

When
$$n = 1$$
: $\binom{-1}{k} = (-1)^k \binom{-1+k-1}{k} = (-1)^k \binom{k}{k} = (-1)^k$

When |z| < 1:

$$(x+y)^{-1} = \sum_{k=0}^{\infty} {\binom{-1}{k}} x^k y^{-1-k} = \sum_{k=0}^{\infty} {(-1)^k x^k y^{-1-k}}$$
$$\frac{1}{1-z} = (-z+1)^{-1} = \sum_{k=0}^{\infty} {(-1)^k (-z)^k (1)^{-1-k}} = \sum_{k=0}^{\infty} {(-1)^k (-1)^k (z)^k} = \sum_{k=0}^{\infty} {z^k}$$