
Math 150 Exam 2 Form C
October 28, 2015

[3] 1.) In the expansion of (2x+ 5y − z − 1)10, the coefficient of x4y3z5 is 0.

[5] In the expansion of (2x+ 5y − z − 1)10, the coefficient of x2yz is −10(10!)
6! .

10!
2!1!1!6! (2x)

2(5y)(−z)(−1)6 = − 10(10!)
6! x2yz

[13] 2.) Let S = {x6, x5, x4, x3, x2, x1, x0}.

What subset of S corresponds to 1101101? {x6, x5, x3, x2, x0}

1101101 = 26 + 25 + 23 + 22 + 20

What subset comes before the subset {x4}? {x3, x2, x1, x0}

{x4} corresponds to 24 and 24 = 10000.

10000
− 1

01111

What subset comes after the subset {x4}? {x4, x0}

10000
+ 1

10001

[10] 3.) How many permutations of {1, 2, 3, 4, 5, 6, 7}

A permutation corresponds to inversion sequence a1, ..., a7 where ai are non-negative
integers and a1 ≤ 6, a2 ≤ 5, a3 ≤ 4, a4 ≤ 3, a5 ≤ 2, a6 ≤ 1, a7 = 0.

6 + 5 + 4 + 3 + 2 + 1 + 0 = 21

[4] a.) have exactly 20 inversions? 6

The only inversion sequences containing 20 inversions are
5, 5, 4, 3, 2, 1, 0 6, 4, 4, 3, 2, 1, 0 6, 5, 3, 3, 2, 1, 0
6, 5, 4, 2, 2, 1, 0 6, 5, 4, 3, 1, 1, 0 6, 5, 4, 3, 2, 0, 0

[3] a.) have exactly 21 inversions? 1

The only inversion sequence containing 21 inversions is 6, 5, 4, 3, 2, 1, 0

[3] a.) have exactly 22 inversions? 0



[9] 4.) Draw the Hasse Diagram for the inversion poset (X3,≤) where X3 = the set
of permutations of {1, 2, 3} and if π and σ are two permutations in X3, then π ≤ σ if
the set of inversions of π is a subset of the set of inversions of σ.
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2pts Extra credit: Prove that r(3, 3) ≥ 6 (Note this problem is not the same as 6A).

	
  

The above coloring of K5 shows there exists a coloring of K5 that does not contain a
red K3 or a blue K3. Thus r(3, 3) > 5



[20] 5.) State the definition of equivalence relation:

An equivalence relation on X is a relation (i.e., a subset of X ×X) that is reflexive,
symmetric, transitive.

Use the definition of equivalence relation to show the ∼ is an equivalence relation on
Z where n ∼ k iff n−k

4 ∈ Z

Claim: ∼=p is reflexive. That is, ∀x ∈ X, x ∼ x.

x−x
4 = 0 ∈ Z. Thus x ∼ x.

Claim: ∼=p is symmetric. I.e., if x ∼ y, then y ∼ x.

Suppose x ∼ y. Then x−y
4 ∈ Z. Thus y−x

4 = −x−y
4 ∈ Z since the negative of an

integer is an integer. Hence y ∼ x.

Claim: ∼=p is transitive. I.e., if x ∼ y and y ∼ z, then x ∼ z.

Suppose x ∼ y and y ∼ z. Then x−y
4 ∈ Z and y−z

4 ∈ Z.

Thus x−z
4 = x−y

4 + y−z
4 ∈ Z since the sum of two integers is an integer.

Thus ∼ is an equivalence relation.

What are the equivalence classes of Z with respect to ∼?

[0] = {...,−8,−4, 0, 4, 8, ...} = the set containing all multiples of 4.

[1] = {...,−7,−3, 1, 5, 9, ...} = the set of numbers whose remainder is 1 when divided
by 4.

[2] = {...,−6,−2, 2, 6, 10, ...} = the set of numbers whose remainder is 2 when divided
by 4.

[3] = {...,−5,−1, 3, 7, 11, ...} = the set of numbers whose remainder is 3 when divided
by 4.

Partition Z into its equivalence classes (I.e., write Z as the disjoint union of sets where
the sets correspond to equivalence classes.

Z = [0] ∪ [1] ∪ [2] ∪ [3]



[40] 6.) Choose 2 from the following 3 problems. Circle your choices: A B C
You may do all 3 problems in which case your unchosen problem can replace your
lowest scoring problem at 4/5 the value (or more) as discussed in class.

Note: If you do not CLEARLY indicate your 2 choices, I will assume that you chose
the first two problems.

6A.) Prove that r(3, 3) ≤ 6. State where you use the Pigeon-hole principle and whether
you use the weak form or the strong form.

Method 1: Proof by contradiction: Suppose r(3, 3) > 6.

Then there exists a coloring of K6 that contains neither a red triangle nor a blue
triangle.

Let v be a vertex of K6. Let us consider the set of red edges that have v as an endpoint
and the set of blue edges that have v as an endpoint. The number of edges that have v
as an endpoint is 5. Thus by the pigeon-hole principle (strong-form) of these 5 edges,
either 3 are red or 3 are blue.

WLOG (without loss of generality) assume there exists 3 red edges, {v, v1}, {v, v2},
and {v, v3}.

Consider the edges {v1, v2}, {v1, v3}, and {v2, v3}.

Suppose one of these edges, {vi, vj} is colored red. Then {v, vi}, {v, vj}, {vi, vj} is a
red triangle. But our coloring does not have a red K3.

Thus none of the edges {v1, v2}, {v1, v3}, and {v2, v3} can be colored red.

Thus {v1, v2}, {v1, v3}, and {v2, v3} are all colored blue. But then {v1, v2}, {v1, v3},
and {v2, v3} is a blue triangle, a contridiction.

Thus there does not exist a coloring of K6 that contains neither a red triangle nor a
blue triangle.

Thus our assumption that r(3, 3) > 6 is incorrect. Hend r(3, 3) ≤ 6.

If you are not required to use the pigeonhole principle, then two alternate proofs:

Method 2: r(s, t) ≤ r(s− 1, t) + r(s, t− 1) and r(s, 2) = r(2, s) = s.

Thus r(3, 3) ≤ r(2, 3) + r(3, 2) = 3 + 3 = 6

Method 3: r(s, t) ≤
(
s+ t− 2
s− 1

)
. Thus r(3, 3) ≤

(
3 + 3− 2
3− 1

)
=

(
4
2

)
= 4!

2!2! = 6.



6B.) Use a combinatorial argument to prove the Vandermonde convolution for the
binomial coefficients: For all positve integers m1,m2, n,

n∑
k=0

(
m1

k

)(
m2

n− k

)
=

(
m1 +m2

n

)
See answers to HW ch 5 #25 posted under content on ICON

6C.) State Newton’s binomial theorem for expanding (x+ y)α where α ∈ R.

Let α ∈ R. Then if 0 ≤ |x| < |y|,

(x+ y)α =
∞∑
k=0

(
α
k

)
xkyα−k

where

(
α
k

)
=


α(α−1)...(α−k+1)

k! if k ≥ 1
1 if k = 0
0 if k ≤ −1

Use this theorem to algebraically derive the formula: 1
1−z =

∞∑
k=0

zk when |z| < 1.

Hint: Let α = −1. You may use the fact that

(
−n
k

)
= (−1)k

(
n+ k − 1

k

)

When n = 1:

(
−1
k

)
= (−1)k

(
−1 + k − 1

k

)
= (−1)k

(
k
k

)
= (−1)k

When |z| < 1:

(x+ y)−1 =
∞∑
k=0

(
−1
k

)
xky−1−k =

∞∑
k=0

(−1)kxky−1−k

1
1−z = (−z + 1)−1=

∞∑
k=0

(−1)k(−z)k(1)−1−k =
∞∑
k=0

(−1)k(−1)k(z)k =
∞∑
k=0

zk


