Math 150 Exam 2
October 30, 2009
Choose 6 from the following 8 problems. Circle your choices: $1 \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ You may do more than 6 problems in which case one of your two unchosen problems can replace your lowest problem at $4 / 5$ the value as discussed in class.
1.) $\binom{2.3}{4}=$

2a.) State the axiom of choice (you can give either a formal or informal definition).

2b.) State a cyclic Gray code of order 3.
3.) Let $\mathcal{P}=\left\{P_{\alpha} \mid \alpha \in A\right\}$ be a partition of X. Define a relation \sim on X by $x \sim y$ if and only if there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$. Show that \sim is an equivalence relation.
4.) Let \mathcal{Z} be the set of integers. Define the equivalence relation \sim on \mathcal{Z} by $x \sim y$ if and only if $5 \mid(x-y)(x y-1)$. Show that \sim is reflexive and symmetric. Use \sim to partition \mathcal{Z} into its equivalence classes. Make sure the sets in your partition are pairwise disjoint.
5.) Let $X=\{1,2,3,4\}$. Define the relation R on X by $x R y$ if and only if $3 \mid(2 x-y)$. Draw R as a subset of $X \times X$. Determine which of the following properties hold for R (Prove it).

Is R reflexive?

Is R irreflexive?

Is R symmetric?

Is R antisymmetric?

Is R transitive?
6.) Determine the number of 10 -combinations of $\{5 \cdot a, 5 \cdot b, 5 \cdot c\}$.
7.) Prove that $(x+y+z)^{n}=\Sigma\left(\begin{array}{c}n \\ n_{1} \\ n_{2}\end{array} n_{3}.\right) x^{n_{1}} y^{n_{2}} z^{n_{3}}$.

8a.) Use the binomial theorem to prove that $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$.

8b.) Generalize to find the sum $\sum_{k=0}^{n}\binom{n}{k} r^{k}$.

