Math 150 Exam 2
October 30, 2009
Choose 6 from the following 8 problems. Circle your choices: $1 \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ You may do more than 6 problems in which case one of your two unchosen problems can replace your lowest problem at $4 / 5$ the value as discussed in class.
1.) $\binom{2.3}{4}=\frac{(2.3)(1.3)(0.3)(-0.7)}{(4)(3)(2)(1)}$

2a.) State the axiom of choice (you can give either a formal or informal definition).
Formal: Suppose $\left\{C_{\alpha} \mid \alpha \in A\right\}$ is an infinite collection of sets (i.e, $|A|$ is infinite). Then we can form a set $B=\left\{x_{\alpha} \mid \alpha \in A\right\}$ by taking one element $x_{\alpha} \in C_{\alpha}$ for each C_{α} (i.e., for each $\alpha \in A$).

Alternate formal definition: Given an infinite collection of sets $\left\{C_{\alpha} \mid \alpha \in A\right\}$, we can define a function $f:\left\{C_{\alpha} \mid \alpha \in A\right\} \rightarrow \cup_{\alpha \in A} C_{\alpha}$ such that $f\left(C_{\alpha}\right) \in C_{\alpha}$.

Informal: If you have an infinite collection of pairs of socks, you can choose one sock from each pair.

2b.) State a cyclic Gray code of order 3.
000
001
011
010
110
111
101
100
3.) Let $\mathcal{P}=\left\{P_{\alpha} \mid \alpha \in A\right\}$ be a partition of X. Define a relation \sim on X by $x \sim y$ if and only if there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$. Show that \sim is an equivalence relation.

Reflexive: Since \mathcal{P} is a partition of $X, X=\cup P_{\alpha}$. Thus $x \in X$ implies there exists $P_{\alpha} \in \mathcal{P}$ such that $x \in P_{\alpha}$. Hence $x \sim x$.

Symmetric: Suppose $x \sim y$. Then there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$. Since $y, x \in P_{\alpha}$, $y \sim x$.

Transitive: Suppose $x \sim y$ and $y \sim z$. Then there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$ and there exists $P_{\beta} \in \mathcal{P}$ such that $y, z \in P_{\beta}$. Thus $y \in P_{\alpha} \cap P_{\beta}$. Since \mathcal{P} is a partition and $P_{\alpha} \cap P_{\beta} \neq \emptyset, P_{\alpha}=P_{\beta}$. Thus $x, z \in P_{\alpha}$. Hence $x \sim z$.
4.) Let \mathcal{Z} be the set of integers. Define the equivalence relation \sim on \mathcal{Z} by $x \sim y$ if and only if $5 \mid(x-y)(x y-1)$. Show that \sim is reflexive and symmetric. Use \sim to partition \mathcal{Z} into its equivalence classes. Make sure the sets in your partition are pairwise disjoint.

Reflexive

Claim: $x \sim x$.
$(x-x)\left(x^{2}-1\right)=0$ Thus $5 \mid(x-x)\left(x^{2}-1\right)$. Hence $x \sim x$.

Symmetric

Claim: $x \sim y$ implies $y \sim x$.
Suppose $x \sim y$. Then $5 \mid(x-y)(x y-1)$. Thus $(x-y)(x y-1)=5 k$ for some integer k. Hence $(y-x)(y x-1)=5(-k)$ where $-k$ is an integer. Thus $5 \mid(y-x)(y x-1)$ and $y \sim x$

Equivalence classes:

Suppose $x=5 k+j$ and $y=j$. Then $(5 k+j-j)[(5 k+j) j-1]=(5 k)[(5 k+j) j-1]$.
Thus $5 \mid(5 k+j-j)((5 k+j) j-1)$. Hence $5 k+j \sim j$
Thus we only need to determine if the equivalence classes $[0],[1],[2],[3],[4]$ are pairwise disjoint.
$(0-k)((0)(1)-1)=k$ is divisible by 5 iff k is a multiple of 5 . Thus $0 \nsim k$ for $k=1,2,3,4$. Hence the equivalence class [0] is disjoint from $[k]$ for $k=1,2,3,4$.
$(3-2)((3)(2)-1)=5$ is divisible by 5 . Thus $2 \sim 3$. Hence $[2]=[3]$.
$(1-2)((1)(2)-1)=-1$ is not divisible by 5 . Thus $1 \nsim 2$. Hence $[1] \cap[2]=\emptyset$.
$(4-1)((4)(1)-1)=9$ is not divisible by 5 . Thus $1 \nsim 4$. Hence $[1] \cap[4]=\emptyset$.
$(4-2)((4)(2)-1)=14$ is not divisible by 5 . Thus $2 \nsim 4$. Hence $[2] \cap[4]=\emptyset$.
Thus \mathcal{Z} is partitioned into the equivalence classes [0], [1], [2], [4] where

$$
[0]=\{5 k \mid k \in \mathcal{Z}\}, \quad[1]=\{5 k+1 \mid k \in \mathcal{Z}\}, \quad[2]=\{5 k+2 \mid k \in \mathcal{Z}\},[4]=\{5 k+4 \mid k \in \mathcal{Z}\}
$$

5.) Let $X=\{1,2,3,4\}$. Define the relation R on X by $x R y$ if and only if $3 \mid(2 x-y)$. Draw R as a subset of $X \times X$. Determine which of the following properties hold for R (Prove it).

Is R reflexive?

No. Let $x=y=1.2 x-y=2-1=1$ which is not divisible by 3 . Thus $1 \not R 1$ Is R irreflexive?

No. Let $x=y=3$. $2 x-y=6-3=3$ which is divisible by 3 . Thus $3 R 3$ Is R symmetric?

Yes. We have both $1 R 2$ and $2 R 1$ as well as $2 R 4$ and $4 R 2$. Since $X=\{1,2,3,4\}$, this covers all cases where $x \neq y$ and $x R y$.

Note R need not be symmetric if X were a larger set than $X=\{1,2,3,4\}$. Is R antisymmetric?

No. We have both $1 R 2$ and $2 R 1$, but $1 \neq 2$.
Is R transitive?
No. We have both $1 R 2$ and $2 R 4$, but we don't have $1 R 4$.
6.) Determine the number of 10 -combinations of $\{5 \cdot a, 5 \cdot b, 5 \cdot c\}$.

Let $S=10$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Then $|S|=\binom{10+3-1}{10}=\frac{(12)(11)}{2}=66$
Let $A_{1}=10$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least $6 a$'s.
Let $A_{2}=10$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least $6 b$'s.
Let $A_{3}=10$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least $6 c$'s.
$\left|A_{1}\right|=\#$ of 10 combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least $6 a$'s $=\#$ of $10-6=4$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}=\binom{4+3-1}{4}=\frac{(6)(5)}{2}=15$

Similarly $\left|A_{2}\right|=\left|A_{3}\right|=15$.
$\left|A_{1} \cap A_{2}\right|=\#$ of 10 combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least $6 a$'s and at least $6 b ' s=0$.

Similarly $\left|A_{1} \cap A_{3}\right|=\left|A_{2} \cap A_{3}\right|=\left|A_{1} \cap A_{2} \cap A_{3}\right|=0$
Thus the number of 10 -combinations of $\{5 \cdot a, 5 \cdot b, 5 \cdot c\}=$
$|S|-\Sigma\left|A_{i}\right|+\Sigma\left|A_{i} \cap A_{j}\right|-\left|A_{1} \cap A_{2} \cap A_{3}\right|=66-3(15)=66-45=21$.
7.) Prove that $(x+y+z)^{n}=\Sigma\left(\begin{array}{cc}n \\ n_{1} & n_{2}\end{array} n_{3}\right) x^{n_{1}} y^{n_{2}} z^{n_{3}}$.

When multiplying out $(x+y+z)^{n}$, we obtain terms of the form $x^{n_{1}} y^{n_{2}} z^{n_{3}}$ where $n_{1}+n_{2}+n_{3}=$ n as each of the n factors of $(x+y+z)^{n}$ contributes an x, y, or z to each term of $(x+y+z)^{n}$.

Note that each term of $(x+y+z)^{n}$ corresponds to a permutation of the multiset $\{\infty \cdot x, \infty$. $y, \infty \cdot z\}$ where if the permutation contains $n_{1} x$'s, $n_{2} y$'s, and $n_{3} z$'s, then $n_{1}+n_{2}+n_{3}=n$.

Thus the coefficient of $x^{n_{1}} y^{n_{2}} z^{n_{3}}=$ the number of terms where the permutation contains n_{1} x 's, $n_{2} y$'s and $n_{3} z$'s and $n_{1}+n_{2}+n_{3}=n$.

The number of permutation which contain $n_{1} x$'s, $n_{2} y$'s and $n_{3} z$'s where $n_{1}+n_{2}+n_{3}=n$ is $\left(\begin{array}{cc}n \\ n_{1} & n_{2}\end{array} n_{3}\right)$.

Thus $(x+y+z)^{n}=\Sigma\left(\begin{array}{c}n \\ n_{1} \\ n_{2}\end{array} n_{3}\right) x^{n_{1}} y^{n_{2}} z^{n_{3}}$.
Alternate proof. When multiplying out $(x+y+z)^{n}$, we obtain terms of the form $x^{n_{1}} y^{n_{2}} z^{n_{3}}$ where $n_{1}+n_{2}+n_{3}=n$ as each of the n factors of $(x+y+z)^{n}$ contributes an x, y, or z to each term of $(x+y+z)^{n}$. To form a term $x^{n_{1}} y^{n_{2}} z^{n_{3}}$, we
(1) need to choose $n_{1} x$'s from the $n x$'s appearing in $(x+y+z)^{n}$
(2) from the remaining $n-n_{1}$ factors from which x was not chosen, we need to choose n_{2} y 's
(3) choose all $n_{3} z$'s from the remaining $n-n_{1}-n_{2}=n_{3}$ factors from which neither x nor y was chosen.

The number of ways to choose $n_{1} x$'s from $n x$'s is $\binom{n}{n_{1}}$.
The number of ways to choose $n_{2} y$'s from $n-n_{1} y$'s is $\binom{n-n_{1}}{n_{2}}$.
The number of ways to choose $n_{3} z^{\prime}$'s from $n-n_{1}-n_{2} z$'s is $\binom{n-n_{1}-n_{2}}{n_{3}}$.

Thus the coefficient of $x^{n_{1}} y^{n_{2}} z^{n_{3}}$ is $\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{3}}{n_{3}}$
$=\frac{n!}{n_{1}!\left(n-n_{1}\right)!} \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \frac{\left(n-n_{1}-n_{2}\right)!}{n_{3}!\left(n-n_{1}-n_{2}-n_{3}\right)!}=\frac{n!}{n_{1}!n_{2}!n_{3}!(0)!}$
Thus $(x+y+z)^{n}=\Sigma\binom{n}{n_{1} n_{2} n_{3}} x^{n_{1}} y^{n_{2}} z^{n_{3}}$.

8a.) Use the binomial theorem to prove that $2^{n}=\Sigma_{k=0}^{n}\binom{n}{k}$.
Binomial theorem: $(x+y)^{n}=\Sigma_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
Let $x=1, y=1$. Then $2^{n}=(1+1)^{n}=\Sigma_{k=0}^{n}\binom{n}{k}(1)^{k}(1)^{n-k}=\Sigma_{k=0}^{n}\binom{n}{k}$.
8b.) Generalize to find the sum $\Sigma_{k=0}^{n}\binom{n}{k} r^{k}$.
Let $x=r, y=1$. Then $(r+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}(r)^{k}(1)^{n-k}=\sum_{k=0}^{n}\binom{n}{k} r^{k}$.

