
Math 150 Exam 2
October 30, 2009

Choose 6 from the following 8 problems. Circle your choices: 1 2 3 4 5 6 7 8
You may do more than 6 problems in which case one of your two unchosen problems can
replace your lowest problem at 4/5 the value as discussed in class.

1.)

(

2.3
4

)

= (2.3)(1.3)(0.3)(−0.7)
(4)(3)(2)(1)

2a.) State the axiom of choice (you can give either a formal or informal definition).

Formal: Suppose {Cα | α ∈ A} is an infinite collection of sets (i.e, |A| is infinite). Then we
can form a set B = {xα | α ∈ A} by taking one element xα ∈ Cα for each Cα (i.e., for each
α ∈ A).

Alternate formal definition: Given an infinite collection of sets {Cα | α ∈ A}, we can define
a function f : {Cα | α ∈ A} → ∪α∈ACα such that f(Cα) ∈ Cα.

Informal: If you have an infinite collection of pairs of socks, you can choose one sock from
each pair.

2b.) State a cyclic Gray code of order 3.

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

3.) Let P = {Pα | α ∈ A} be a partition of X. Define a relation ∼ on X by x ∼ y if and
only if there exists Pα ∈ P such that x, y ∈ Pα. Show that ∼ is an equivalence relation.

Reflexive: Since P is a partition of X, X = ∪Pα. Thus x ∈ X implies there exists Pα ∈ P
such that x ∈ Pα. Hence x ∼ x.

Symmetric: Suppose x ∼ y. Then there exists Pα ∈ P such that x, y ∈ Pα. Since y, x ∈ Pα,
y ∼ x.

Transitive: Suppose x ∼ y and y ∼ z. Then there exists Pα ∈ P such that x, y ∈ Pα and
there exists Pβ ∈ P such that y, z ∈ Pβ . Thus y ∈ Pα ∩ Pβ . Since P is a partition and
Pα ∩ Pβ 6= ∅, Pα = Pβ . Thus x, z ∈ Pα. Hence x ∼ z.



4.) Let Z be the set of integers. Define the equivalence relation ∼ on Z by x ∼ y if and only
if 5|(x − y)(xy − 1). Show that ∼ is reflexive and symmetric. Use ∼ to partition Z into its
equivalence classes. Make sure the sets in your partition are pairwise disjoint.

Reflexive

Claim: x ∼ x.

(x − x)(x2 − 1) = 0 Thus 5|(x − x)(x2 − 1). Hence x ∼ x.

Symmetric

Claim: x ∼ y implies y ∼ x.

Suppose x ∼ y. Then 5|(x−y)(xy−1). Thus (x−y)(xy−1) = 5k for some integer k. Hence
(y − x)(yx − 1) = 5(−k) where −k is an integer. Thus 5|(y − x)(yx − 1) and y ∼ x

Equivalence classes:

Suppose x = 5k + j and y = j. Then (5k + j − j)[(5k + j)j − 1] = (5k)[(5k + j)j − 1].

Thus 5|(5k + j − j)((5k + j)j − 1). Hence 5k + j ∼ j

Thus we only need to determine if the equivalence classes [0], [1], [2], [3], [4] are pairwise
disjoint.

(0 − k)((0)(1) − 1) = k is divisible by 5 iff k is a multiple of 5. Thus 0 6∼ k for k = 1, 2, 3, 4.
Hence the equivalence class [0] is disjoint from [k] for k = 1, 2, 3, 4.

(3 − 2)((3)(2) − 1) = 5 is divisible by 5. Thus 2 ∼ 3. Hence [2] = [3].

(1 − 2)((1)(2) − 1) = −1 is not divisible by 5. Thus 1 6∼ 2. Hence [1] ∩ [2] = ∅.

(4 − 1)((4)(1) − 1) = 9 is not divisible by 5. Thus 1 6∼ 4. Hence [1] ∩ [4] = ∅.

(4 − 2)((4)(2) − 1) = 14 is not divisible by 5. Thus 2 6∼ 4. Hence [2] ∩ [4] = ∅.

Thus Z is partitioned into the equivalence classes [0], [1], [2], [4] where

[0] = {5k | k ∈ Z}, [1] = {5k + 1 | k ∈ Z}, [2] = {5k + 2 | k ∈ Z}, [4] = {5k + 4 | k ∈ Z}



5.) Let X = {1, 2, 3, 4}. Define the relation R on X by xRy if and only if 3|(2x − y). Draw
R as a subset of X × X. Determine which of the following properties hold for R (Prove it).

1

2

3

4

1 2 3 4
Is R reflexive?

No. Let x = y = 1. 2x − y = 2 − 1 = 1 which is not divisible by 3. Thus 1 6R 1

Is R irreflexive?

No. Let x = y = 3. 2x − y = 6 − 3 = 3 which is divisible by 3. Thus 3R3

Is R symmetric?

Yes. We have both 1R2 and 2R1 as well as 2R4 and 4R2. Since X = {1, 2, 3, 4}, this
covers all cases where x 6= y and xRy.

Note R need not be symmetric if X were a larger set than X = {1, 2, 3, 4}.

Is R antisymmetric?

No. We have both 1R2 and 2R1, but 1 6= 2.

Is R transitive?

No. We have both 1R2 and 2R4, but we don’t have 1R4.

6.) Determine the number of 10-combinations of {5 · a, 5 · b, 5 · c}.

Let S = 10 combinations of {∞ · a,∞ · b,∞ · c}. Then |S| =

(

10 + 3 − 1
10

)

= (12)(11)
2 = 66

Let A1 = 10 combinations of {∞ · a,∞ · b,∞ · c} which contain at least 6 a’s.

Let A2 = 10 combinations of {∞ · a,∞ · b,∞ · c} which contain at least 6 b’s.

Let A3 = 10 combinations of {∞ · a,∞ · b,∞ · c} which contain at least 6 c’s.

|A1| = # of 10 combinations of {∞ · a,∞ · b,∞ · c} which contain at least 6 a’s

= # of 10 - 6 = 4 combinations of {∞ · a,∞ · b,∞ · c} =

(

4 + 3 − 1
4

)

= (6)(5)
2 = 15

Similarly |A2| = |A3| = 15.

|A1 ∩A2| = # of 10 combinations of {∞ · a,∞ · b,∞ · c} which contain at least 6 a’s and at
least 6 b’s = 0.



Similarly |A1 ∩ A3| = |A2 ∩ A3| = |A1 ∩ A2 ∩ A3| = 0

Thus the number of 10-combinations of {5 · a, 5 · b, 5 · c} =
|S| − Σ|Ai| + Σ|Ai ∩ Aj | − |A1 ∩ A2 ∩ A3| = 66 − 3(15) = 66 − 45 = 21.

7.) Prove that (x + y + z)n = Σ

(

n

n1 n2 n3

)

xn1yn2zn3 .

When multiplying out (x+y+z)n, we obtain terms of the form xn1yn2zn3 where n1+n2+n3 =
n as each of the n factors of (x+y+z)n contributes an x, y, or z to each term of (x+y+z)n.

Note that each term of (x + y + z)n corresponds to a permutation of the multiset {∞ ·x,∞·
y,∞· z} where if the permutation contains n1 x’s, n2 y’s, and n3 z’s, then n1 +n2 +n3 = n.

Thus the coefficient of xn1yn2zn3 = the number of terms where the permutation contains n1

x’s, n2 y’s and n3 z’s and n1 + n2 + n3 = n.

The number of permutation which contain n1 x’s, n2 y’s and n3 z’s where n1 + n2 + n3 = n

is

(

n

n1 n2 n3

)

.

Thus (x + y + z)n = Σ

(

n

n1 n2 n3

)

xn1yn2zn3 .

Alternate proof. When multiplying out (x + y + z)n, we obtain terms of the form xn1yn2zn3

where n1 + n2 + n3 = n as each of the n factors of (x + y + z)n contributes an x, y, or z to
each term of (x + y + z)n. To form a term xn1yn2zn3 , we

(1) need to choose n1 x’s from the n x’s appearing in (x + y + z)n

(2) from the remaining n − n1 factors from which x was not chosen, we need to choose n2

y’s

(3) choose all n3 z’s from the remaining n − n1 − n2 = n3 factors from which neither x nor
y was chosen.

The number of ways to choose n1 x’s from n x’s is

(

n

n1

)

.

The number of ways to choose n2 y’s from n − n1 y’s is

(

n − n1

n2

)

.

The number of ways to choose n3 z’s from n − n1 − n2 z’s is

(

n − n1 − n2

n3

)

.



Thus the coefficient of xn1yn2zn3 is

(

n

n1

)(

n − n1

n2

)(

n − n1 − n3

n3

)

= n!
n1!(n−n1)!

(n−n1)!
n2!(n−n1−n2)!

(n−n1−n2)!
n3!(n−n1−n2−n3)! = n!

n1!n2!n3!(0)!

Thus (x + y + z)n = Σ

(

n

n1 n2 n3

)

xn1yn2zn3 .

8a.) Use the binomial theorem to prove that 2n = Σn
k=0

(

n

k

)

.

Binomial theorem: (x + y)n = Σn
k=0

(

n

k

)

xkyn−k.

Let x = 1, y = 1. Then 2n = (1 + 1)n = Σn
k=0

(

n

k

)

(1)k(1)n−k = Σn
k=0

(

n

k

)

.

8b.) Generalize to find the sum Σn
k=0

(

n

k

)

rk.

Let x = r, y = 1. Then (r + 1)n = Σn
k=0

(

n

k

)

(r)k(1)n−k = Σn
k=0

(

n

k

)

rk.


