Math 150 Exam 2 October 30, 2009

Choose 6 from the following 8 problems. Circle your choices: $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8$ You may do more than 6 problems in which case one of your two unchosen problems can replace your lowest problem at 4/5 the value as discussed in class.

1.)
$$\binom{2.3}{4} = \frac{(2.3)(1.3)(0.3)(-0.7)}{(4)(3)(2)(1)}$$

2a.) State the axiom of choice (you can give either a formal or informal definition).

Formal: Suppose $\{C_{\alpha} \mid \alpha \in A\}$ is an infinite collection of sets (i.e, |A| is infinite). Then we can form a set $B = \{x_{\alpha} \mid \alpha \in A\}$ by taking one element $x_{\alpha} \in C_{\alpha}$ for each C_{α} (i.e., for each $\alpha \in A$).

Alternate formal definition: Given an infinite collection of sets $\{C_{\alpha} \mid \alpha \in A\}$, we can define a function $f : \{C_{\alpha} \mid \alpha \in A\} \to \bigcup_{\alpha \in A} C_{\alpha}$ such that $f(C_{\alpha}) \in C_{\alpha}$.

Informal: If you have an infinite collection of pairs of socks, you can choose one sock from each pair.

2b.) State a cyclic Gray code of order 3.

 $\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{array}$

3.) Let $\mathcal{P} = \{P_{\alpha} \mid \alpha \in A\}$ be a partition of X. Define a relation \sim on X by $x \sim y$ if and only if there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$. Show that \sim is an equivalence relation.

Reflexive: Since \mathcal{P} is a partition of $X, X = \bigcup P_{\alpha}$. Thus $x \in X$ implies there exists $P_{\alpha} \in \mathcal{P}$ such that $x \in P_{\alpha}$. Hence $x \sim x$.

Symmetric: Suppose $x \sim y$. Then there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$. Since $y, x \in P_{\alpha}$, $y \sim x$.

Transitive: Suppose $x \sim y$ and $y \sim z$. Then there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$ and there exists $P_{\beta} \in \mathcal{P}$ such that $y, z \in P_{\beta}$. Thus $y \in P_{\alpha} \cap P_{\beta}$. Since \mathcal{P} is a partition and $P_{\alpha} \cap P_{\beta} \neq \emptyset$, $P_{\alpha} = P_{\beta}$. Thus $x, z \in P_{\alpha}$. Hence $x \sim z$. 4.) Let \mathcal{Z} be the set of integers. Define the equivalence relation \sim on \mathcal{Z} by $x \sim y$ if and only if 5|(x-y)(xy-1). Show that \sim is reflexive and symmetric. Use \sim to partition \mathcal{Z} into its equivalence classes. Make sure the sets in your partition are pairwise disjoint.

Reflexive

Claim: $x \sim x$.

 $(x-x)(x^2-1) = 0$ Thus $5|(x-x)(x^2-1)$. Hence $x \sim x$.

Symmetric

Claim: $x \sim y$ implies $y \sim x$.

Suppose $x \sim y$. Then 5|(x-y)(xy-1). Thus (x-y)(xy-1) = 5k for some integer k. Hence (y-x)(yx-1) = 5(-k) where -k is an integer. Thus 5|(y-x)(yx-1) and $y \sim x$

Equivalence classes:

Suppose x = 5k + j and y = j. Then (5k + j - j)[(5k + j)j - 1] = (5k)[(5k + j)j - 1].

Thus 5|(5k+j-j)((5k+j)j-1). Hence $5k+j \sim j$

Thus we only need to determine if the equivalence classes [0], [1], [2], [3], [4] are pairwise disjoint.

(0-k)((0)(1)-1) = k is divisible by 5 iff k is a multiple of 5. Thus $0 \not\sim k$ for k = 1, 2, 3, 4. Hence the equivalence class [0] is disjoint from [k] for k = 1, 2, 3, 4.

(3-2)((3)(2)-1) = 5 is divisible by 5. Thus $2 \sim 3$. Hence [2] = [3].

(1-2)((1)(2)-1) = -1 is not divisible by 5. Thus $1 \neq 2$. Hence $[1] \cap [2] = \emptyset$.

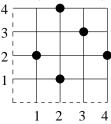
(4-1)((4)(1)-1) = 9 is not divisible by 5. Thus $1 \not\sim 4$. Hence $[1] \cap [4] = \emptyset$.

(4-2)((4)(2)-1) = 14 is not divisible by 5. Thus $2 \not\sim 4$. Hence $[2] \cap [4] = \emptyset$.

Thus \mathcal{Z} is partitioned into the equivalence classes [0], [1], [2], [4] where

 $[0] = \{5k \mid k \in \mathcal{Z}\}, \ [1] = \{5k+1 \mid k \in \mathcal{Z}\}, \ [2] = \{5k+2 \mid k \in \mathcal{Z}\}, \ [4] = \{5k+4 \mid k \in \mathcal{Z}\}$

5.) Let $X = \{1, 2, 3, 4\}$. Define the relation R on X by xRy if and only if 3|(2x - y). Draw R as a subset of $X \times X$. Determine which of the following properties hold for R (Prove it).



Is R reflexive?

No. Let x = y = 1. 2x - y = 2 - 1 = 1 which is not divisible by 3. Thus 1 $\not R$ 1

Is R irreflexive?

No. Let x = y = 3. 2x - y = 6 - 3 = 3 which is divisible by 3. Thus 3R3

Is R symmetric?

Yes. We have both 1R2 and 2R1 as well as 2R4 and 4R2. Since $X = \{1, 2, 3, 4\}$, this covers all cases where $x \neq y$ and xRy.

Note R need not be symmetric if X were a larger set than $X = \{1, 2, 3, 4\}$.

Is R antisymmetric?

No. We have both 1R2 and 2R1, but $1 \neq 2$.

Is R transitive?

No. We have both 1R2 and 2R4, but we don't have 1R4.

6.) Determine the number of 10-combinations of $\{5 \cdot a, 5 \cdot b, 5 \cdot c\}$.

Let S = 10 combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Then $|S| = \begin{pmatrix} 10+3-1\\10 \end{pmatrix} = \frac{(12)(11)}{2} = 66$

Let $A_1 = 10$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least 6 *a*'s.

Let $A_2 = 10$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least 6 b's.

Let $A_3 = 10$ combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least 6 c's.

 $|A_1| = \# \text{ of } 10 \text{ combinations of } \{\infty \cdot a, \infty \cdot b, \infty \cdot c\} \text{ which contain at least } 6 a's = \# \text{ of } 10 - 6 = 4 \text{ combinations of } \{\infty \cdot a, \infty \cdot b, \infty \cdot c\} = \binom{4+3-1}{4} = \frac{(6)(5)}{2} = 15$

Similarly $|A_2| = |A_3| = 15$.

 $|A_1 \cap A_2| = \#$ of 10 combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ which contain at least 6 *a*'s and at least 6 *b*'s = 0.

Similarly $|A_1 \cap A_3| = |A_2 \cap A_3| = |A_1 \cap A_2 \cap A_3| = 0$

Thus the number of 10-combinations of $\{5 \cdot a, 5 \cdot b, 5 \cdot c\} = |S| - \Sigma |A_i| + \Sigma |A_i \cap A_j| - |A_1 \cap A_2 \cap A_3| = 66 - 3(15) = 66 - 45 = 21.$

7.) Prove that
$$(x+y+z)^n = \Sigma \begin{pmatrix} n \\ n_1 & n_2 & n_3 \end{pmatrix} x^{n_1} y^{n_2} z^{n_3}.$$

When multiplying out $(x+y+z)^n$, we obtain terms of the form $x^{n_1}y^{n_2}z^{n_3}$ where $n_1+n_2+n_3 = n$ as each of the *n* factors of $(x+y+z)^n$ contributes an *x*, *y*, or *z* to each term of $(x+y+z)^n$.

Note that each term of $(x + y + z)^n$ corresponds to a permutation of the multiset $\{\infty \cdot x, \infty \cdot y, \infty \cdot z\}$ where if the permutation contains n_1 x's, n_2 y's, and n_3 z's, then $n_1 + n_2 + n_3 = n$.

Thus the coefficient of $x^{n_1}y^{n_2}z^{n_3}$ = the number of terms where the permutation contains n_1 x's, n_2 y's and n_3 z's and $n_1 + n_2 + n_3 = n$.

The number of permutation which contain n_1 *x*'s, n_2 *y*'s and n_3 *z*'s where $n_1 + n_2 + n_3 = n$ is $\binom{n}{n_1 n_2 n_3}$.

Thus $(x + y + z)^n = \Sigma \begin{pmatrix} n \\ n_1 & n_2 & n_3 \end{pmatrix} x^{n_1} y^{n_2} z^{n_3}.$

Alternate proof. When multiplying out $(x + y + z)^n$, we obtain terms of the form $x^{n_1}y^{n_2}z^{n_3}$ where $n_1 + n_2 + n_3 = n$ as each of the *n* factors of $(x + y + z)^n$ contributes an *x*, *y*, or *z* to each term of $(x + y + z)^n$. To form a term $x^{n_1}y^{n_2}z^{n_3}$, we

(1) need to choose n_1 x's from the n x's appearing in $(x + y + z)^n$

(2) from the remaining $n - n_1$ factors from which x was not chosen, we need to choose n_2 y's

(3) choose all n_3 z's from the remaining $n - n_1 - n_2 = n_3$ factors from which neither x nor y was chosen.

The number of ways to choose n_1 x's from n x's is $\binom{n}{n_1}$.

The number of ways to choose n_2 y's from $n - n_1$ y's is $\binom{n - n_1}{n_2}$.

The number of ways to choose n_3 z's from $n - n_1 - n_2$ z's is $\binom{n - n_1 - n_2}{n_3}$.

Thus the coefficient of $x^{n_1}y^{n_2}z^{n_3}$ is $\binom{n}{n_1}\binom{n-n_1}{n_2}\binom{n-n_1-n_3}{n_3}$ = $\frac{n!}{n_1!(n-n_1)!}\frac{(n-n_1)!}{n_2!(n-n_1-n_2)!}\frac{(n-n_1-n_2)!}{n_3!(n-n_1-n_2-n_3)!} = \frac{n!}{n_1!n_2!n_3!(0)!}$ Thus $(x+y+z)^n = \Sigma \binom{n}{n_1 n_2 n_3}x^{n_1}y^{n_2}z^{n_3}.$

8a.) Use the binomial theorem to prove that $2^n = \sum_{k=0}^n \binom{n}{k}$.

Binomial theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.

Let x = 1, y = 1. Then $2^n = (1+1)^n = \sum_{k=0}^n \binom{n}{k} (1)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k}$.

8b.) Generalize to find the sum $\sum_{k=0}^{n} \binom{n}{k} r^{k}$.

Let x = r, y = 1. Then $(r+1)^n = \sum_{k=0}^n \binom{n}{k} (r)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k} r^k$.