Math 150 Final Exam
December 13, 2006
Choose 7 from the following 10 problems. Circle your choices: 12345678910 You may do more than 7 problems in which case your unchosen problems can replace your lowest one or two problems at $2 / 3$ the value as discussed in class.
1.) Show that every sequence $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ contains either an increasing or decreasing subsequence of length $n+1$.
2.) The Ramsey number $r(3,3)=$ \qquad . Prove your answer.
3.) Is the intersection $R \cap S$ of two equivalence relations R and S on a set X always an equivalence relation on X ? Is the union $R \cup S$ of two equivalence relations R and S on a set X always an equivalence relation on X ? Prove your answer.
4.) Find the number of integral solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}=60$ such that $0 \leq x_{1} \leq 10,1 \leq x_{2} \leq 5, x_{3} \geq-2$, and $x_{4} \geq 4$.
5.) Let D_{n} be the number of derangements of $\{1,2, \ldots, n\}$. Determine a formula for D_{n}. Prove your answer.
6.) Solve the recurrence relation $h_{n}=2 h_{n-1}+3^{n}$ with initial value $h_{0}=4$

7a.) Determine the generating function for the number h_{n} of n-combinations of fruit consisting of apples, oranges, bananas, pears, and kiwis in which there are an odd number of apples, the number of oranges is a multiple of 4 , the number of bananas is at most 3 , the number of pears is 0 or 1 , and there are at least 2 kiwis.

7b.) Find a formula for h_{n}.

8a.) Find the number of partitions of 6 distinguishable objects into 3 nonempty distinguishable boxes.

8b.) Find the difference table for $h_{n}=n^{2}+1$
8c.) $\sum_{k=0}^{n} h_{k}=$ \qquad

9a.) Find the number of subsets of $\{1,2,3, \ldots, 10\}$.

9b.) Find the number of subsets of $\{1,2,3, \ldots, 10\}$ which have exactly 8 elements .

9c.) Find the number of permutations of $\{1,2,3, \ldots, 10\}$ which have exactly 8 elements.

9d.) Find the number of permutations of $\{3 \cdot a, 4 \cdot b, 1 \cdot c\}$ which have exactly 8 elements.

9e.) Find the number of partitions of 25 indistinguishable objects into 10 distinguishable boxes.

10a.) Expand $(x-2 y)^{6}$ using the binomial theorem.

10b.) What is the coefficient of $x^{4} y^{3} z^{2}$ in the expansion of $(x-y+3 z)^{9}$: \qquad

10c.) What is the coefficient of $x^{3} y^{3} z^{2}$ in the expansion of $(x-y+3 z)^{9}$: \qquad

10d.) The inversion sequence for the permutation 615423 is \qquad

10e.) The permutation corresponding to the inversion sequence $5,1,3,2,1,0$ is \qquad

