Math 150 Exam 1
October 4, 2006
Choose 7 from the following 9 problems. Circle your choices: $1 \begin{array}{llllllll} & 2 & 4 & 5 & 7 & 8\end{array}$ You may do more than 7 problems in which case your two unchosen problems can replace your lowest one or two problems at $2 / 3$ the value as discussed in class.
1.) $\mathrm{P}(10,7)=(10)(9)(8)(7)(6)(5)(4)$
$C(10,7)=\binom{10}{7}=\underline{\frac{10!}{7!3!}}=\frac{(10)(9)(8)}{(3)(2)(1)}=(10)(3)(4)=120$
The inversion sequence for the permutation 15243 is $\underline{0,1,2,1,0}$
The permutation corresponding to the inversion sequence $3,0,2,1,0$ is $\underline{2,5,4,1,3}$
2.) $r(9,2)=\underline{9}$
$r(3,3)=\underline{6}$
Given that $\left\{x_{13}, x_{12}, x_{7}, x_{1}\right\}$ is a 4 -combination of $\left\{x_{13}, x_{12}, \ldots, x_{1}, x_{0}\right\}$, Determine the combinations which come immediately before and after the combination $\left\{x_{13}, x_{12}, x_{7}, x_{1}\right\}$, using the base 2 generating scheme.

Before $\left\{x_{13}, x_{12}, x_{7}, x_{1}\right\}: \underline{\left\{x_{13}, x_{12}, x_{7}, x_{0}\right\}}$:
$11000010000010-1=11000010000001$

After $\left\{x_{13}, x_{12}, x_{7}, x_{1}\right\}: \underline{\left\{x_{13}, x_{12}, x_{7}, x_{1}, x_{0}\right\}}$
$11000010000010+1=11000010000011$
Determine the 4 -combinations of $\{1,2, \ldots, 14\}$ which come immediately before and after the the 4 -combination $\{2,8,13,14\}$ in lexicographical ordering.

Before $\{2,8,13,14\}: \underline{\{2,8,12,14\}}$
After $\{2,8,13,14\}: \underline{\{2,9,10,11\}}$
3.) In how many ways can 9 indistinguishable rooks be places on a 20 -by- 20 chessboard so that no rook can attack another rook?
$\frac{20!}{9!(11)!} \frac{20!}{11!}$
In how many ways can 9 rooks be places on a 20 -by- 20 chessboard so that no rook can
attack another rook if no two rooks have the same color?
$\frac{20!}{9!(11)!} \frac{20!}{11!} 9!$
4.) How many different circular permutations can be made using using 30 beads if you have 20 green beads, 9 blue beads and 1 red beads?
$\frac{29!}{20!9!}$
5.) How many sets of 3 numbers each can be formed from the numbers $\{1,2,3, \ldots, 50\}$ if no two consecutive numbers are to be in a set?

Suppose we think of the 50 numbers as 50 sticks. The number of ways of removing 3 sticks such that no two are consecutive is the same as the number of integral solutions to $x_{1}+x_{2}+x_{3}+x_{4}=47$ where $x_{1}, x_{4} \geq 0$ and $x_{2}, x_{3} \geq 1$. This is the same as the number of solutions to $x_{1}+y_{2}+1+y_{3}+1+x_{4}=47$ where $x_{1}, x_{4} \geq 0, y_{2}=x_{2}-1 \geq 1-1=0$, $y_{3}=x_{3}-1 \geq 1-1=0$. This is the same as the number of solutions to $x_{1}+y_{2}+y_{3}+x_{4}=45$ where $x_{1}, x_{4}, y_{2}, y_{3} \geq 0$.

Hence by thm 3.5.1, the answer is $\binom{45+4-1}{45}=\binom{48}{45}=\frac{48(47)(46)}{6}$
6.) Use the pigeonhole principle to prove that in a group of n people where $n>1$, there are at least 2 people who have the same number of acquaintances. State where you use the pigeonhole principle.

Number the people 1 through n. We will assume that all acquaintances are mutual. We will also assume that you can't be your own acquaintance. Thus if person i has k_{i} acquaintances among the group of n people, $k_{i} \in\{0, \ldots, n-1\}$.

Case 1: There exists someone who knows everyone else. Then $k_{i} \in\{1, \ldots, n-1\}$ for $i=1, \ldots, n$. Thus by the pigeonhole principle, there exists $i \neq j$ such that $k_{i}=k_{j}$.

Case 2: There does not exist someone who knows everyone else. Then $k_{i} \in\{0, \ldots, n-2\}$ for $i=1, \ldots, n$. Thus by the pigeonhole principle, there exists $i \neq j$ such that $k_{i}=k_{j}$.
7.) Suppose $x, y \in \mathcal{Z}$. Define a relation on \mathcal{Z} such that $x \sim y$ iff there exists $k \in \mathcal{Z}$ such that $x-y=5 k$. Show \sim is an equivalence relation on \mathcal{Z}. What are the equivalence classes?

Claim: \sim is reflexive.
$x-x=5(0)$ and $0 \in \mathcal{Z}$. Thus $x \sim x$.
Claim: \sim is symmetric.

Suppose $x \sim y$. Then there exists $k \in \mathcal{Z}$ such that $x-y=5 k$. Thus $y-x=5(-k) . k \in \mathcal{Z}$ implies $-k \in \mathcal{Z}$. Thus $y \sim x$.

Claim: \sim is transitive. Suppose $x \sim y$ and $y \sim z$. Then there exists $k \in \mathcal{Z}$ such that $x-y=5 k$. Also, there exists $n \in \mathcal{Z}$ such that $y-z=5 n$. Thus $x-z=x-y+y-z=$ $5 k+5 n=5(k+n) . k, n \in \mathcal{Z}$ implies $k+n \in \mathcal{Z}$. Thus $x \sim z$.

The equivalence classes are

$$
\begin{aligned}
& {[0]=\{\ldots-10,-5,0,5,10, \ldots\}} \\
& {[1]=\{\ldots-9,-4,1,6,11, \ldots\}} \\
& {[2]=\{\ldots-8,-3,2,7,12, \ldots\}} \\
& {[3]=\{\ldots-7,-2,3,8,13, \ldots\}} \\
& {[4]=\{\ldots-6,-1,4,9,14, \ldots\}}
\end{aligned}
$$

8.) Let $X=\{1,2,3\}$. Define a partial order on $X \times X$ by $\left(x_{1}, y_{1}\right) \leq_{x}\left(x_{2}, y_{2}\right)$ iff $x_{1} \leq x_{2}$ (for example $(1,3) \leq_{x}(2,1)$). Is \leq_{x} reflexive? Is \leq_{x} symmetric? Is \leq_{x} antisymmetric? Is \leq_{x} transitive? Is \leq_{x} a partial order? Is \leq_{x} an equivalence relation? Give a proof for each answer.

Claim: \leq is reflexive.
Take $(x, y) \in X . x \leq x$. Thus $(x, y) \leq_{x}(x, y)$
Claim: \leq_{x} NOT symmetric?
$(1,2) \leq_{x}(2,1)$ since $1 \leq 2$, but $(2,1) \leq_{x}(1,2)$ since $2 \not \leq 1$.
Claim: \leq_{x} is NOT antisymmetric?
$(1,2) \leq_{x}(1,3)$ since $1 \leq 1 .(1,3) \leq_{x}(1,2)$ since $1 \leq 1$. But $(1,2) \neq(1,3)$
Claim: \leq is transitive.
Suppose $\left(x_{1}, y_{1}\right) \leq_{x}\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \leq_{x}\left(x_{3}, y_{3}\right)$.
$\left(x_{1}, y_{1}\right) \leq_{x}\left(x_{2}, y_{2}\right)$ implies $x_{1} \leq x_{2} .\left(x_{2}, y_{2}\right) \leq_{x}\left(x_{3}, y_{3}\right)$ implies $x_{2} \leq x_{3}$.
$x_{1} \leq x_{2}$ and $x_{2} \leq x_{3}$ implies $x_{1} \leq x_{3}$. Thus $\left(x_{1}, y_{1}\right) \leq_{x}\left(x_{3}, y_{3}\right)$.
\leq_{x} is NOT a partial order since it is not anti-symmetric.
\leq_{x} is NOT an equivalence relation since it is not symmetric.
9.) Use a combinatorial argument to prove $\Sigma_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{2 n}{n}$
$\binom{2 n}{n}=$ the number of ways to choose n elements from $\{1, \ldots, 2 n\}$.
$\binom{n}{k}=$ the number of ways to choose k elements from $\{1, \ldots, n\}$.
$\binom{n}{n-k}=$ the number of ways to choose $n-k$ elements from $\{n+1, \ldots, 2 n\}$.
Suppose A is an n-element subset of $\{1, \ldots, 2 n\}$. Let $k=|A \cap\{1, \ldots, n\}|$.
Thus to choose an n-element subset of $\{1, \ldots, 2 n\}$, we can first fix k and choose k elements from $\{1, \ldots, n\}$ and $n-k$ elements from $\{n+1, \ldots, 2 n\}$. For a fixed k, the number of ways of choosing k elements from $\{1, \ldots, n\}$ and $n-k$ elements from $\{n+1, \ldots, 2 n\}$ is $\binom{n}{k}\binom{n}{n-k}$. To get all n element subset of $\{1, \ldots, 2 n\}$, we must do this for $k=0, \ldots, n$. Thus the number of ways to choose n elements from $\{1, \ldots, 2 n\}=\Sigma_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}$.

