Math 150 Exam 1 October 4, 2006

Choose 7 from the following 9 problems. Circle your choices: $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$ You may do more than 7 problems in which case your two unchosen problems can replace your lowest one or two problems at 2/3 the value as discussed in class.

1.)
$$P(10, 7) = (10)(9)(8)(7)(6)(5)(4)$$

$$C(10,7) = {10 \choose 7} = \frac{10!}{7!3!} = \frac{(10)(9)(8)}{(3)(2)(1)} = (10)(3)(4) = 120$$

The inversion sequence for the permutation 15243 is 0, 1, 2, 1, 0

The permutation corresponding to the inversion sequence 3, 0, 2, 1, 0 is 2, 5, 4, 1, 3

2.)
$$r(9,2) = 9$$

$$r(3,3) = 6$$

Given that $\{x_{13}, x_{12}, x_7, x_1\}$ is a 4-combination of $\{x_{13}, x_{12}, ..., x_1, x_0\}$, Determine the combinations which come immediately before and after the combination $\{x_{13}, x_{12}, x_7, x_1\}$, using the base 2 generating scheme.

Before
$$\{x_{13}, x_{12}, x_{7}, x_{1}\}$$
: $\{x_{13}, x_{12}, x_{7}, x_{0}\}$:

 $1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0$ - $1\ =\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0$

After
$$\{x_{13}, x_{12}, x_7, x_1\}$$
: $\{x_{13}, x_{12}, x_7, x_1, x_0\}$

$$1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0 + 1 = 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 1$$

Determine the 4-combinations of $\{1, 2, ..., 14\}$ which come immediately before and after the 4-combination $\{2, 8, 13, 14\}$ in lexicographical ordering.

Before
$$\{2, 8, 13, 14\}$$
: $\{2, 8, 12, 14\}$

After
$$\{2, 8, 13, 14\}: \{2, 9, 10, 11\}$$

3.) In how many ways can 9 indistinguishable rooks be places on a 20-by-20 chessboard so that no rook can attack another rook?

$$\frac{20!}{9!(11)!} \frac{20!}{11!}$$

In how many ways can 9 rooks be places on a 20-by-20 chessboard so that no rook can

attack another rook if no two rooks have the same color?

$$\frac{20!}{9!(11)!} \frac{20!}{11!} 9!$$

4.) How many different circular permutations can be made using using 30 beads if you have 20 green beads, 9 blue beads and 1 red beads?

$$\frac{29!}{20! \ 9!}$$

5.) How many sets of 3 numbers each can be formed from the numbers $\{1, 2, 3, ..., 50\}$ if no two consecutive numbers are to be in a set?

Suppose we think of the 50 numbers as 50 sticks. The number of ways of removing 3 sticks such that no two are consecutive is the same as the number of integral solutions to $x_1 + x_2 + x_3 + x_4 = 47$ where $x_1, x_4 \ge 0$ and $x_2, x_3 \ge 1$. This is the same as the number of solutions to $x_1 + y_2 + 1 + y_3 + 1 + x_4 = 47$ where $x_1, x_4 \ge 0$, $y_2 = x_2 - 1 \ge 1 - 1 = 0$, $y_3 = x_3 - 1 \ge 1 - 1 = 0$. This is the same as the number of solutions to $x_1 + y_2 + y_3 + x_4 = 45$ where $x_1, x_4, y_2, y_3 \ge 0$.

Hence by thm 3.5.1, the answer is
$$\binom{45+4-1}{45} = \binom{48}{45} = \frac{48(47)(46)}{6}$$

6.) Use the pigeonhole principle to prove that in a group of n people where n > 1, there are at least 2 people who have the same number of acquaintances. State where you use the pigeonhole principle.

Number the people 1 through n. We will assume that all acquaintances are mutual. We will also assume that you can't be your own acquaintance. Thus if person i has k_i acquaintances among the group of n people, $k_i \in \{0, ..., n-1\}$.

Case 1: There exists someone who knows everyone else. Then $k_i \in \{1, ..., n-1\}$ for i = 1, ..., n. Thus by the pigeonhole principle, there exists $i \neq j$ such that $k_i = k_j$.

Case 2: There does not exist someone who knows everyone else. Then $k_i \in \{0, ..., n-2\}$ for i = 1, ..., n. Thus by the pigeonhole principle, there exists $i \neq j$ such that $k_i = k_j$.

7.) Suppose $x, y \in \mathcal{Z}$. Define a relation on \mathcal{Z} such that $x \sim y$ iff there exists $k \in \mathcal{Z}$ such that x - y = 5k. Show \sim is an equivalence relation on \mathcal{Z} . What are the equivalence classes?

Claim: \sim is reflexive.

$$x - x = 5(0)$$
 and $0 \in \mathcal{Z}$. Thus $x \sim x$.

Claim: \sim is symmetric.

Suppose $x \sim y$. Then there exists $k \in \mathcal{Z}$ such that x - y = 5k. Thus y - x = 5(-k). $k \in \mathcal{Z}$ implies $-k \in \mathcal{Z}$. Thus $y \sim x$.

Claim: \sim is transitive. Suppose $x \sim y$ and $y \sim z$. Then there exists $k \in \mathbb{Z}$ such that x - y = 5k. Also, there exists $n \in \mathbb{Z}$ such that y - z = 5n. Thus x - z = x - y + y - z = 5k + 5n = 5(k + n). $k, n \in \mathbb{Z}$ implies $k + n \in \mathbb{Z}$. Thus $x \sim z$.

The equivalence classes are

$$[0] = \{\dots -10, -5, 0, 5, 10, \dots\}$$

$$[1] = {\dots -9, -4, 1, 6, 11, \dots}$$

$$[2] = \{ \dots -8, -3, 2, 7, 12, \dots \}$$

$$[3] = {\dots -7, -2, 3, 8, 13, \dots}$$

$$[4] = {\dots -6, -1, 4, 9, 14, \dots}$$

8.) Let $X = \{1, 2, 3\}$. Define a partial order on $X \times X$ by $(x_1, y_1) \leq_x (x_2, y_2)$ iff $x_1 \leq x_2$ (for example $(1, 3) \leq_x (2, 1)$). Is \leq_x reflexive? Is \leq_x symmetric? Is \leq_x antisymmetric? Is \leq_x transitive? Is \leq_x a partial order? Is \leq_x an equivalence relation? Give a proof for each answer.

Claim: \leq is reflexive.

Take $(x, y) \in X$. $x \le x$. Thus $(x, y) \le_x (x, y)$

Claim: \leq_x NOT symmetric?

 $(1,2) \leq_x (2,1)$ since $1 \leq 2$, but $(2,1) \leq_x (1,2)$ since $2 \nleq 1$.

Claim: \leq_x is NOT antisymmetric?

$$(1,2) \leq_x (1,3)$$
 since $1 \leq 1$. $(1,3) \leq_x (1,2)$ since $1 \leq 1$. But $(1,2) \neq (1,3)$

Claim: \leq is transitive.

Suppose $(x_1, y_1) \leq_x (x_2, y_2)$ and $(x_2, y_2) \leq_x (x_3, y_3)$.

 $(x_1, y_1) \le_x (x_2, y_2)$ implies $x_1 \le x_2$. $(x_2, y_2) \le_x (x_3, y_3)$ implies $x_2 \le x_3$.

 $x_1 \le x_2$ and $x_2 \le x_3$ implies $x_1 \le x_3$. Thus $(x_1, y_1) \le_x (x_3, y_3)$.

 \leq_x is NOT a partial order since it is not anti-symmetric.

 \leq_x is NOT an equivalence relation since it is not symmetric.

9.) Use a combinatorial argument to prove $\Sigma_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}$

 $\binom{2n}{n}$ = the number of ways to choose n elements from $\{1, ..., 2n\}$.

 $\binom{n}{k}$ = the number of ways to choose k elements from $\{1,...,n\}$.

 $\binom{n}{n-k}$ = the number of ways to choose n-k elements from $\{n+1,...,2n\}$.

Suppose A is an n-element subset of $\{1,...,2n\}$. Let $k = |A \cap \{1,...,n\}|$.

Thus to choose an n-element subset of $\{1,...,2n\}$, we can first fix k and choose k elements from $\{1,...,n\}$ and n-k elements from $\{n+1,...,2n\}$. For a fixed k, the number of ways of choosing k elements from $\{1,...,n\}$ and n-k elements from $\{n+1,...,2n\}$ is $\binom{n}{k}\binom{n}{n-k}$. To get all n element subset of $\{1,...,2n\}$, we must do this for k=0,...,n.

Thus the number of ways to choose n elements from $\{1,...,2n\} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}$.