www.geometrygames.org/TorusGames
Equivalence class $[a]=\{x \mid x \sim a\}$
$\mathcal{P}=\left\{P_{\alpha} \mid \alpha \in A\right\}$ is a partition of X iff
$X=\cup_{P_{\alpha} \in \mathcal{P}} P_{\alpha}, \quad P_{\alpha} \neq \emptyset \forall \alpha$, and $P_{\alpha} \cap P_{\beta} \neq \emptyset$ implies $P_{\alpha}=P_{\beta}$
Ex: Suppose $a, b \in \mathcal{Z} . \quad a \sim b$ if $a b>0$
$[4]=$
$[-2]=$
$[0]=$

Ex: $\mathcal{Z}=$

Thm 4.5.3: If \sim is an equivalence relation on X, then $\left\{\left[x_{\alpha}\right] \mid x_{\alpha} \in X\right\}$ is a partition of X.

If $\mathcal{P}=\left\{P_{\alpha} \mid \alpha \in A\right\}$ is a partition of X, then
$x \sim y$ iff $\exists P_{\alpha}$ such that $x, y \in P_{\alpha}$ is an equivalence relation.
Proof: Suppose \sim is an equivalence relation on X.
Claim: $\left\{\left[x_{\alpha}\right] \mid x_{\alpha} \in X\right\}$ is a partition of X.
Let $x_{\alpha} \in X$. Then $x_{\alpha} \in\left[x_{\alpha}\right]$ since \sim is reflexive.
Thus $\left[x_{\alpha}\right] \neq \emptyset$ and $X=\cup_{x_{a} \in X}\left[x_{\alpha}\right]$.

Suppose $\left[x_{\alpha}\right] \cap\left[x_{\beta}\right] \neq \emptyset$.
Claim: $\left[x_{\alpha}\right]=\left[x_{\beta}\right]$
Claim: $\left[x_{\alpha}\right] \subset\left[x_{\beta}\right]$ and $\left[x_{\beta}\right] \subset\left[x_{\alpha}\right]$
Claim: If $z \in\left[x_{\alpha}\right]$, then $z \in\left[x_{\beta}\right]$ (and similarly for the other inclusion).

Proof of Claim: Since $z \in\left[x_{\alpha}\right], z \sim x_{\alpha}$.

Suppose $\mathcal{P}=\left\{P_{\alpha} \mid a \in A\right\}$.
Claim: $x \sim y$ iff there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$ is an equivalence relation on X.

Proof of Claim: HW \#44 (don't assume finite).

