www.geometrygames.org/TorusGames

Equivalence class $[a] = \{x \mid x \sim a\}$

 $\mathcal{P} = \{P_{\alpha} \mid \alpha \in A\} \text{ is a partition of } X \text{ iff} \\ X = \bigcup_{P_{\alpha} \in \mathcal{P}} P_{\alpha}, \ P_{\alpha} \neq \emptyset \ \forall \alpha, \text{ and } P_{\alpha} \cap P_{\beta} \neq \emptyset \text{ implies } P_{\alpha} = P_{\beta}$

Ex: Suppose $a, b \in \mathcal{Z}$. $a \sim b$ if ab > 0

[4] =

$$[-2] =$$

[0] =

Ex: $\mathcal{Z} =$

Thm 4.5.3: If \sim is an equivalence relation on X, then $\{[x_{\alpha}] \mid x_{\alpha} \in X\}$ is a partition of X.

If $\mathcal{P} = \{P_{\alpha} \mid \alpha \in A\}$ is a partition of X, then $x \sim y$ iff $\exists P_{\alpha}$ such that $x, y \in P_{\alpha}$ is an equivalence relation.

Proof: Suppose \sim is an equivalence relation on X.

Claim: $\{[x_{\alpha}] \mid x_{\alpha} \in X\}$ is a partition of X.

Let $x_{\alpha} \in X$. Then $x_{\alpha} \in [x_{\alpha}]$ since \sim is reflexive. Thus $[x_{\alpha}] \neq \emptyset$ and $X = \bigcup_{x_{\alpha} \in X} [x_{\alpha}]$. Suppose $[x_{\alpha}] \cap [x_{\beta}] \neq \emptyset$. Claim: $[x_{\alpha}] = [x_{\beta}]$

Claim: $[x_{\alpha}] \subset [x_{\beta}]$ and $[x_{\beta}] \subset [x_{\alpha}]$

Claim: If $z \in [x_{\alpha}]$, then $z \in [x_{\beta}]$ (and similarly for the other inclusion).

Proof of Claim: Since $z \in [x_{\alpha}], z \sim x_{\alpha}$.

Suppose $\mathcal{P} = \{ P_{\alpha} \mid a \in A \}.$

Claim: $x \sim y$ iff there exists $P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$ is an equivalence relation on X.

Proof of Claim: HW #44 (don't assume finite).