
7.1: Sequences

Arithmetic sequence: h0, h0 + q, h0 + 2q, ...

hn = hn−1 + q = h0 + nq, n ≥ 0

Example: hn = 3 + 5n: 3, 8, 13, 18, 23, 28, ...

Geometric sequence: h0, qh0, q
2h0, ...

hn = qhn−1 = qnh0, n ≥ 0

Example: hn = 2n: 1, 2, 4, 8, 16, 32, 62, 128, 256, 512, ...

hn = 2n = number of combinations of an n-element set.

Partial sums: sn =
n∑

k=0

hk

Partial sums of arithmetic sequence:

sn =
n∑

k=0

h0 + kq =
n∑

k=0

h0 +
n∑

k=0

kq = (n+ 1)h0 +
qn(n+1)

2

Example: If hk = 3+5k, then sn =
n∑

k=0

hk = (n+1)3+ 5n(n+1)
2

3, 11, 24, 42, 65, 93, ....

Geometric sequence: sn =
n∑

k=0

qkh0 =

{
qn+1−1
q−1 h0 q ̸= 1

(n+ 1)h0 q = 1

Example: If hk = 2k, then sn =
n∑

k=0

hk = 2n+1−1
2−1

1, 3, 7, 15, 31, 63, ....
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Fibonacci:

Suppose a pair of rabbits of the opposite sex give birth to a
pair of rabbits of opposite sex every month starting with their
second month. If we begin with a pair of newly born rabbits,
how many rabbits are there after one year.

Let fn = # of pairs of rabbits at the beginning of month n

f0 = f1 = f2 = f3 = f4 = f5 =

Hence fn =

Lemma: sn =
n∑

k=0

fn = fn−2 − 1

Proof by induction on n.

Lemma: fn is even iff 3|n.

Proof by induction on n.

Note that f0 = 0 is even, f1 = 1 is odd, and f2 = 1 is odd.

Suppose f3n is even, f3n+1 is odd, and f3n+2 is odd.

Then f3n+3 = f3n+2 + f3n+1. Since odd + odd is even,
f3n+3 is even.

Then f3n+4 = f3n+3 + f3n+2. Since even + odd is odd,
f3n+4 is odd.

Then f3n+5 = f3n+4 + f3n+3. Since odd + even is odd,
f3n+5 is odd.
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Thm 7.1.2: fn =
n−1∑
k=0

(
n− 1− k

k

)

Proof: Check if g(n) =
n−1∑
k=0

(
n− 1− k

k

)
satisfies g(n) = g(n− 1)+ g(n− 2) and g(1) = 1 and g(2) = 1

g(1) =
1−1∑
k=0

(
1− 1− k

k

)
=

0∑
k=0

(
−k
k

)
=

(
0
0

)
= 1

g(2) =
2−1∑
k=0

(
2− 1− k

k

)
=

1∑
k=0

(
1− k
k

)
=

(
1
0

)
+

(
0
1

)
= 1 + 0 = 1

g(n− 1) + g(n− 2)

=
n−1−1∑
k=0

(
n− 1− 1− k

k

)
+

n−2−1∑
k=0

(
n− 2− 1− k

k

)

=
n−2∑
k=0

(
n− 2− k

k

)
+

n−3∑
k=0

(
n− 3− k

k

)

=
n−2∑
k=0

(
n− 2− k

k

)
+

n−2∑
k=1

(
n− 3− (k − 1)

k − 1

)

=

(
n− 2
0

)
+

n−2∑
k=1

(
n− 2− k

k

)
+

n−2∑
k=1

(
n− 3− (k − 1)

k − 1

)

=

(
n− 2
0

)
+

n−2∑
k=1

(
n− 2− k

k

)
+

n−2∑
k=1

(
n− 2− k
k − 1

)
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=

(
n− 2
0

)
+

n−2∑
k=1

[(
n− 2− k

k

)
+

(
n− 2− k
k − 1

)]

=

(
n− 2
0

)
+

n−2∑
k=1

(
n− 1− k

k

)

=

(
n− 2
0

)
+

n−1∑
k=0

(
n− 1− k

k

)
−
(
n− 1
0

)
−

(
0

n− 1

)

= 1 +
n−1∑
k=0

(
n− 1− k

k

)
− 1− 0

=
n−1∑
k=0

(
n− 1− k

k

)

Fibonacci sequence is defined by

Homogeneous linear recurrence relation: fn−fn−1−fn−2 = 0

and initial conditions: f(0) = 0, f(1) = 1.

Thm 7.1.1: fn = 1√
5
( 1+

√
5

2 )n − 1√
5
( 1−

√
5

2 )n

Proof: Suppose fn = xn. Then fn−1 = xn−1 and fn−2 = xn−2

Then 0 = fn − fn−1 − fn−2 = xn − xn−1 − xn−2

Thus xn−2(x2 − x− 1) = 0.

Thus either x = 0 or x =
1±

√
1−4(1)(−1)

2 = 1±
√
5

2

4



Thus fn = 0, fn =
(

1+
√
5

2

)n

and fn =
(

1−
√
5

2

)n

are 3 different sequences that satisfy the

homogeneous linear recurrence relation: fn−fn−1−fn−2 = 0.

Hence fn = c1

(
1+

√
5

2

)n

+ c2

(
1−

√
5

2

)n

also satisfies the

homogeneous linear recurrence relation: fn−fn−1−fn−2 = 0.

Suppose the initial conditions are f0 = a and f1 = b

(note for fibonacci sequence, a = 0 and b = 1).

Then for n = 0: f0 = c1 + c2 = a

And for n = 1: f1 = c1

(
1+

√
5

2

)
+ c2

(
1−

√
5

2

)
= b

Or in matrix form:

 1 1

1+
√
5

2
1−

√
5

2

 (
c1
c2

)
=

(
a
b

)

(
c1
c2

)
=

 1−
√
5

−2
√
5

1√
5

1+
√
5

2
√
5

− 1√
5

 (
a
b

)
=

 1−
√
5

−2
√
5
a+ b√

5

1+
√
5

2
√
5
a− b√
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If a = 0 and b = 1, then

(
c1
c2

)
=

 1√
5

− 1√
5
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5.6

1
(1−x)n = Σ∞

k=0

(
−n
k

)
(−x)k =Σ∞

k=0

(
n+ k − 1

k

)
xk, |x| < 1

1
1−x = 1 + x+ x2 + x3 + ...

xn+1−1
x−1 = 1 + x+ x2 + x3 + ...+ xn

7.2: Generating Functions

g(x) = h0+h1x+h2x
2+ .... is the generating function for the

sequence h0, h1, h2, .....

Ex: The generating fn for the sequence 2, 3, 4, 0, 0, 0, ... is

g(x) = 2 + 3x+ 4x2

Ex: The generating function for the sequence 1, 1, 1, ... is

g(x) = 1 + x+ x2 + ... = 1
1−x

Ex: The generating function for the sequence
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, ... is

g(x) = x4 + x7 + x10 + ... = x4(1 + x3 + x6 + ...) = x4

1−x3
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Ex: The generating function for the sequence(
m
0

)
,

(
m
1

)
,

(
m
2

)
, ...,

(
m
m

)
is

g(x) =

(
m
0

)
+

(
m
1

)
x+

(
m
2

)
x2 + ...

(
m
m

)
xm = (1+x)m

Ex: Suppose α ∈ R. The generating function for the sequence(
α
0

)
,

(
α
1

)
,

(
α
2

)
, ... is

g(x) =

(
α
0

)
+

(
α
1

)
x+

(
α
2

)
x2 + ... = (1 + x)α

Ex: Let hn = number of nonnegative solutions to

e1 + e2 + ...+ ek = n

Thus hn =

Thus g(x) =
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Suppose a multiset of size k must contain the following:

between two to four (inclusive) x’s,
zero, one, two or five y’s.

Find the number of multisets of size k.

“Long” method: list all possibilities

between two to four (inclusive) x’s: x2 + x3 + x4

zero, one, two or five y’s: y0 + y1 + y2 + y5

Both: (x2 + x3 + x4)(y0 + y1 + y2 + y5)

= x2y0+x2y1+x2y2+x2y5+x3y0+x3y1+x3y2+x3y5

+x4y0 + x4y1 + x4y2 + x4y5

= x2y0 + (x2y1 + x3y0) + (x2y2 + x3y1 + x4y0)

+(x3y2 + x4y1) + x4y2 + x2y5 + x3y5 + x4y5

Let hk = number of multisets of size k.

h0 = , h1 = , h2 = , h3 = , h4 = ,
h5 = , h6 = , h7 = , h8 = , h9 = ,
hk = k > 9

“Shorter” method:

between two to four (inclusive) x’s: x2 + x3 + x4

zero, one, two or five y’s: x0 + x1 + x2 + x5

Both: g(x) = (x2 + x3 + x4)(x0 + x1 + x2 + x5)

= x2x0 + (x2x1 + x3x0) + (x2x2 + x3x1 + x4x0)

+(x3x2 + x4x1) + x4x2 + x2x5 + x3x5 + x4x5

= x2 + 2x3 + 3x4 + 2x5 + x6 + x7 + x8 + x9
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Suppose a multiset consisting of integers between 0 and 5 in-
clusive of size k must contain the following:

even number of 0’s: x0 + x2 + x4 + ... = 1
1−x2

odd number of 1’s: x1 + x3 + x5 + ... = x
1−x2

three or four 2’s: x3 + x4 = x3(1 + x)

the number of 3’s is a multiple of five: x0+x5+x10+... = 1
1−x5

btwn zero to four (inclusive) 4’s: x0+x1+x2++x3+x4 = 1−x5

1−x

zero or one 5: x0 + x1 = 1 + x

g(x) = (x0 + x2 + x4 + ...)(x1 + x3 + x5 + ...)(x3 + x4)

(x0 + x5 + x10 + ...)(x0 + x1 + x2 ++x3 + x4)(x0 + x)

=
(

1
1−x2

)(
x

1−x2

)
x3(1 + x)

(
1

1−x5

)(
1−x5

1−x

)
(1 + x)

= x4

(1−x)3 = x4Σ∞
k=0

(
3 + k − 1

k

)
xk = Σ∞

k=0
(k+2)(k+1)

2 xk+4

Find the number of multisets of size n.

Find the number of multisets of size 100.
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Determine the generating function for hn = the number of
ways to make n cents using pennies, nickels, dimes, and quar-
ters.

Note hn = the number of nonnegative integral solutions to

e1 + 5e2 + 10e3 + 25e4 = n

Let f1 = e1, f2 = 5e2, f3 = 10e3, f4 = 25e4,

Then hn = the number of nonnegative integral solutions to
f1 + f2 + f3 + f4 = n

where f1 is a nonnegative integer

f2 is a multiple of 5

f3 is a multiple of 10

f4 is a multiple of 25

Hence the generating function for hn is
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