6.5 Another Forbidden Position Problem

Goal: To derive a formula for counting the number of permutations with relative forbidden positions.

Ex: Suppose children 1, 2, 3, 4, and 5 sit in a row in class. Children 1 and 2 cannot sit next to each other or they will cause trouble.

The order in which the children sit corresponds to a permutation of $\{1,2,3,4,5\}$. If 1 is in the i th spot, then 2 cannot be in the $i-1$ st spot or the $i+1$ th spot. Thus the pattern 21 or 12 cannot appear in our permutation. This is called a relative forbidden position as certain positions for the placement of 2 are forbidden, but these forbidden positions depend on the placement of 1.

We will focus on the relative forbidden position problem in which
Let $Q_{n}=$ the number of permutations of $\{1,2, \ldots, n\}$ in which none of the patterns $12,23,34, \ldots,(n-1) n$ occurs.
Thm 6.5.1 $Q_{n}=n!-\binom{n-1}{1}(n-1)!+\binom{n-1}{2}(n-2)!-\ldots+$ $\binom{n-1}{n-1}(-1)^{n-1} 1$!

Proof: Use inclusion-exclusion principle.
Let $S=$ the set of permutations of $\{1, \ldots, n\}$. Then $|S|=n$!.
Let $A_{j}=$ set of permutations which contain the pattern $j(j+1)$ for $j=1, \ldots, \mathbf{n}-\mathbf{1}$.

To determine $\left|A_{j}\right|$, we can first look at all the permutations of
$\{1,2, \ldots, j, j+2, \ldots, n\}$. Since this set has $n-1$ elements, the number of permutations of $\{1,2, \ldots, j, j+2, \ldots, n\}=(n-1)$!. Note that these permutations are in 1-1 correspondence with A_{j} as any permutation in A_{j} can be formed from a permutation of $\{1,2, \ldots, j, j+2, \ldots, n\}$ by inserting $j+1$ right after j. Thus $\left|A_{j}\right|=(n-1)$!

Claim: $\left|A_{i} \cap A_{j}\right|=(n-2)$! if $1 \leq i<j \leq n$
Suppose $|i-j| \geq 2$. In this case, $A_{i} \cap A_{j}$ is in 1-1 correspondence with permutations of a set of $n-2$ elements as we can create any permutation of $\{1,2, \ldots, i, i+2, \ldots, j, j+2, \ldots, n\}$ by taking a permutation in $A_{i} \cap A_{j}$ and deleting $i+1$ and $j+1$. Thus $\left|A_{j}\right|=(n-2)!$ in this case.

Suppose $|i-j|=1$. Thus $j=i+1$ (since we assumed $i<j$). $A_{i} \cap A_{i+1}$ is the set of permutations which contain the pattern $i i+1$ and the pattern $i+1 i+2$. Thus $A_{i} \cap A_{i+1}$ is the set of permutations which contain the pattern $i i+1 i+2$. Thus $A_{i} \cap A_{i+1}$ is in 1-1 correspondence with permutations of a set of $n-2$ elements as we can create any permutation of $\{1,2, \ldots, i, i+$ $3, \ldots, n\}$ by taking a permutation in $A_{i} \cap A_{i+1}$ and deleting $i+1$ and $i+2$. Thus $\left|A_{i} \cap A_{i+1}\right|=(n-2)$! in this case as well.

Similarly, $\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right|=(n-k)!$.
Thus by inclusion-exclusion $Q_{n}=n!-\Sigma_{j=1}^{n-1}(n-1)!+\Sigma_{i, j}(n-$ $2)$! $-\ldots+(-1)^{n}(n-n)$!
$=\binom{n-1}{0} n!-\binom{n-1}{1}(n-1)!+\binom{n-1}{2}(n-2)!-\ldots+$ $\binom{n-1}{n-1}(-1)^{n-1} 1$!

