
6.3 Derangements

Suppose each person in a group of n friends brings a gift to a
party. In how many ways can the n gifts be distributed so that
each person receives one gift and no person receives their own
gift.

Let the set of friends = {p1, ..., pn} where pj = person j.
Let the set of gifts = {g1, ..., gn} where gj = the gift brought by
person j.

Suppose f : {p1, ..., pn} → {g1, ..., gn},
f(pk) = gj iff person pk receives give gj , the gift brought by
person j.
If each person receives one gift, then f is a bijection.
If no person receives their own gift. Then f(pj) 6= gj .

In simpler notation,
f : {1, ..., n} → {1, ..., n} such that f(j) 6= j

Recall:
a permutation on {1, ..., n} is a bijection f : {1, ..., n} → {1, ..., n}

Ex: The permutation 1 2 3 4 5 corresponds to the identity func-
tion.

Ex: The permutation 1 3 2 corresponds to the function
f(1) = 1, f(2) = 3, f(3) = 2

1



Defn: A derangement of {1, ..., n} is a permutation i1i2...in such
that ij 6= j. I.e, j is not in the jth place.

In function notation:
f(j) = ij , then if i1i2...in is a derangement, f(j) 6= j.

In yet other wording, recall a permutation corresponds to the
placement of n non-attacking rooks on an n× n chessboard.

Ex: The permutation 1 3 2 corresponds to the following rook
placement:

A derangement corresponds to non-attacking rook placement with
forbidden positions along the diagonal (j, j), for j = 1, ..., n.

Ex: If rooks are placed on the following 3 × 3 chessboard in
non-attacking position, then the rook placement corresponds to
a derangement if no rook is placed in a spot marked with an X.

Thus the derangements of {1, 2, 3} are 2 3 1 and 3 1 2.

Let Dn = the number of derangements of {1, ..., n}.

Thus D3 = 2.
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Thm 6.3.1: For n ≥ 1, Dn = n!(1− 1
1! + 1

2! −
1
3! + ... + (−1)n 1

n! )

Pf: Use the inclusion and exclusion principle: If Ai ⊂ S,
∪Ai = |S|−Σn

j=1|Aj |+Σi,j |Ai∩Aj |−...+(−1)n|A1∩A2∩...∩An|.

Choose S: What can we count which contains the set of derange-
ments?

Let S = the set of permutations of {1, ..., n}. Then |S| = n!.

Choose Aj such that the set of derangements = ∪Aj .
Let Aj = set of permutations such that j is in the jth spot.

|Aj | = (n − 1)! since there is only one choice for the jth spot
(namely j), leaving n − 1 terms to permute in the remaining
n− 1 places.

|Ai ∩ Aj | = (n − 2)! since there is only one choice for the ith
spot (namely i) and only one choice for the jth spot (namely j),
leaving n− 2 terms to permute in the remaining n− 2 places.

Similarly, |Ai1 ∩Ai2 ∩ ... ∩Aik | = (n− k)!.

Thus Dn = n!−Σn
j=1(n− 1)! + Σi,j(n− 2)!− ... + (−1)n(n− n)!

=

(
n
0

)
n!−

(
n
1

)
(n− 1)! +

(
n
2

)
(n− 2)!− ... +

(
n
n

)
(−1)n0!

= n!− n!
1! + n!

2! + ... + (−1)n n!
n! = n!(1− 1

1! + 1
2! + ... + (−1)n 1

n! )

Recall

(
n
k

)
= number of ways to choose k Ai’s.

3



Sidenote: Finding the number of derangements is often called
the hat check problem, because in the old days it was sometimes
stated in the following terms: If n men check their hats, what is
the probability that the hats are returned so that no one received
their own hat.

Recall: If E ⊂ S, then the probability of E = P (E) = |E|
|S|

S = sample space, E = events.

Note: we assume each outcome is equally likely.

Suppose 4 customers at a restaurant order 4 meals. What is the
probability that a waiter delivers these 4 orders to the 4 customers
so that no customer receives what they ordered?

Answer: D4

4! = 1− 1 + 1
2 −

1
6 + 1

24 = 9
24 = 0.375

The probability that a permutation of {1, ..., n} is a derangement
= Dn

n! = 1− 1
1! + 1

2! + ... + (−1)n 1
n!

Recall Taylor’s expansion from Calculus I,

f(x) = Σ∞j=0
f(j)(a)

j! (x− a)j (under appropriate hypothesis).

Thus e−1 = Σ∞j=0(−1)j 1
j! (let f(x) = ex, x = −1, a = 0).

Thus e−1 is a good approximation for the probability of a de-
rangement for n (slightly) large.

Thus the probability of a derangement is about the same when
n = 5 as it is for n = 50000000000.

D5

5! = 0.36, D6

6! = 0.36805, D7

7! = 0.36785714285, e−1 = 0.36787944117...
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We can derive a recursive formula for Dn (we will look at many
recursive formulas in chapter 7).

Lemma A: Dn = (n− 1)(Dn−2 + Dn−1) for n ≥ 3.

Note the above formula is a recursive formula as we can determine
Dn by calculating Dk for k < n.

Note D1 = 0, D2 = 1 (as 2 1 is the only derangement of {1, 2}).

Thus D3 = 2(0 + 1) = 2, D4 = 3(1 + 2) = 9, D5 = 4(2 + 9) = 44,
etc.

Combinatorial proof of lemma A:

Let Dn = the set of derangements of {1, ..., n}.

Dn = the number of derangements of {1, ..., n} = |Dn|.

We need to show that Dn is a product of n−1 and Dn−2 +Dn−1.
If we can partition Dn into n− 1 subsets where each subset has
Dn−2 + Dn−1 elements, we can use the multiplication principle
to show Dn = (n− 1)(Dn−2 + Dn−1).

We also want to relate Dn to Dn−1 = the number of dearrange-
ments of {1, ..., n− 1} (and Dn−2).

Let’s focus on one of the positions of a derangement. The last
(nth) position of our derangement can be anything except n.
Thus there are n− 1 choices for the last (nth) position. Note the
factor n− 1 appears in our formula.

Let Rk = the set of derangements of {1, ..., n} where k is in the
nth position for k = 1, ..., n− 1.
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Then Dn = ∪n−1j=0Rn

Let rk = |Rk| the number of derangements such that k is in the
nth position.

Note that r1 = r2 = ... = rn−1 (while rn = 0).

Then Dn = r1 + ... + rn−1 = rn−1 + ... + rn−1 = (n− 1)rn−1.

Thus we have (hopefully) simplified our problem to showing that
Dn−2 + Dn−1 = rn−1 = the number of derangements such that

n− 1 is in the nth position.

We need to partition the permutations in Rn−1 into two sets, one
with Dn−2 elements and the other with Dn−1 elements.

We can easily take care of Dn−2. The numbers n − 1 and n do
not appear in any derangement of {1, ..., n− 2}. In Rn−1, n− 1
appears in the last position. We can take a look at the derange-
ments in Rn−1, such that n appears in the (n− 1)st position. If
we remove the nth and (n−1)st entries, we obtain a derangement
in Dn−2.

Ex: for n = 5, 23154 ∈ Rn−1 → 231 ∈ Dn−2.

Thus Dn−2 = the number of derangements of Rn−1 such that n
is in the (n− 1)st position (and by definition of Rn−1, n− 1 is
in the nth position).

We can now look at the remaining derangements in Rn−1 where
n is not in the (n− 1)st position.
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Let Pn the set of derangement where n− 1 is in the nth position
and k is in the (n − 1)st position for some k 6= n, n − 1 (I.e,
k ≤ n− 2).

We would like to show that Dn−1 = |Pn| = the number of de-
rangements of {1, ..., n} such that n−1 is in the nth position and
k is in the (n− 1)st position for some k ≤ n− 2

Let Dn−1 = the set of derangements of {1, ..., n− 1}.

We would like to create a bijection from Pn to Dn−1

Note that the differences between Pn and Dn−1. A derangement
in Pn has n terms, while a derangement in Dn−1 has n−1 terms.
Thus we need to remove a term to go from Pn to Dn−1.

If i1i2...in ∈ Pn, then in = n−1 and in−1 = k for some k ≤ n−2.
Also ij = n for some j.

In Dn−1, in−1 = k for some k ≤ n− 2 (by definition of derange-
ment of {1, ..., n− 1}, so we have no problems with the (n− 1)st
term.

However, we have the following differences between Pn and Dn−1:

i1i2...in has n terms and
n appears somewhere in i1i2...in, and
in = n− 1, so the placement of n− 1 doesn’t vary.
We can fix this by removing the nth term and replacing ij = n
with ij = n− 1

Let i1i2...in ∈ Pn. Then in = n − 1 and in−1 = k for some
k ≤ n− 2.
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Create a1a2...an−1, a derangement of {1, ..., n− 1} by

let al =

{
il if il 6= n, 1 ≤ l ≤ n− 1
n− 1 if il = n

Ex: For n = 5, 25314 ∈ Pn → 2431 ∈ Dn−1.

This gives us a bijection between Pn and Dn−1. Thus Dn−1 =
|Pn|.

Thus we have shown that Dn = (n − 1)rn−1 = (n − 1)(Dn−2 +
|Pn|) = (n− 1)(Dn−2 + Dn−1) for n ≥ 3.

Another (simpler) recurrance relation:

Lemma B: Dn = nDn−1 + (−1)n for n ≥ 2

Proof by induction on n.

n = 2: D2 = 1 (use definition or Thm 6.3.1)
2D1 + (−1)2 = 2(0) + 1 = 1.
Thus Dn = nDn−1 + (−1)n holds for n = 2.

Suppose Dk−1 = (k − 1)Dk−2 + (−1)k−1.

By lemma A, Dk = (k − 1)Dk−2 + (k − 1)Dk−1

By the induction hypothesis, Dk−1 = (k − 1)Dk−2 + (−1)k−1.
Thus (k − 1)Dk−2 = Dk−1 − (−1)k−1 = Dk−1 + (−1)k

Thus Dk = Dk−1 + (−1)k + (k − 1)Dk−1 = kDk−1 + (−1)k
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