6.2: Combinations with repetitions.

The number of integral solutions to $\Sigma_{n=1}^{5} x_{i}=20$

$$
\text { where }-2 \leq x_{i} \leq 7 \forall i
$$

$=$ The number of integral solutions to $\Sigma_{n=1}^{5} y_{i}=30$

$$
\text { where } 0 \leq y_{i} \leq 9 \forall i
$$

Pf: Let $y_{i}=x_{i}+2$

The number of 30 -combinations of the
multiset $\left\{9 \cdot a_{1}, 9 \cdot a_{1}, 9 \cdot a_{2}, 9 \cdot a_{3}, 9 \cdot a_{4}, 9 \cdot a_{5}\right\}=$

Let $S=$ the set of integral solutions to $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=30$ where $0 \leq y_{i} \forall i$

Then $|S|=$ the number of permutations of $\{30 \cdot 1,4 \cdot+\}=$

For $i=1,2,3,4,5$,
let $A_{i}=$ the set of integral solutions to $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=30$ where $10 \leq y_{i}$

Ex: $(10,5,5,5,5) \in A_{1},(0,20,7,2,1) \in A_{2}$,

$$
(0,0,10,10,10) \in A_{3} \cap A_{4} \cap A_{5}
$$

Then $\overline{\cup_{i=1}^{5} A_{i}}=$ the set of of integral solutions to $\Sigma_{n=1}^{5} y_{i}=30$ where $0 \leq y_{i} \leq 9 \forall i$

