6.2: Combinations with repetitions.

What is the number of r-combinations of $\{n_1 \cdot 1, n_2 \cdot 2, ..., n_k \cdot k\}$?

If k = 1; The number of r-combinations of $\{n \cdot a\} = _$

If $r = \sum_{i=1}^{k} n_i$: The # of r-combinations of $\{n_1 \cdot 1, n_2 \cdot 2, ..., n_k \cdot k\} =$ _____

If $r > \sum_{i=1}^{k} n_i$: The # of r-combinations of $\{n_1 \cdot 1, n_2 \cdot 2, ..., n_k \cdot k\} =$ _____

If $n_i = 1 \ \forall i$: The number of r-combinations of $\{1, 2, ..., k\} =$ _____

If $n_i \ge r \ \forall i$: The number of r-combinations of $\{n_1 \cdot 1, n_2 \cdot 2, ..., n_k \cdot k\}$

= the number of integral solutions to $\sum_{i=1}^{k} x_i = r$

= the number of permutations of $\{r \cdot 1, (k-1) \cdot +\}$

$$= \binom{r+k-1}{r} = \frac{(r+k-1)!}{r!(k-1)!}$$

What if $2 \le n_i < r - 1$?

Ex: The number of 10-combinations of $\{3 \cdot a, 9 \cdot b\}$

This problem is small enough to break into cases & use sum rule:

A 10-subset of $\{3 \cdot a, 9 \cdot b\}$ is of the form $\{n_1 \cdot a, n_2 \cdot b\}$ where

 $n_1 = 0:$ $n_1 = 1:$ $n_1 = 2:$ $n_1 = 3:$

Thus the number of 10-combinations of $\{3 \cdot a, 4 \cdot b\} =$ _____

Can also use inclusion-exclusion:

Let $S = \text{set of all 10-combinations of } \{\infty \cdot a, \infty \cdot b\}, |S| = _$

Let A_1 = set of all 10-combinations of $\{\infty \cdot a, \ \infty \cdot b\}$ containing more than 3 *a*'s , $|A_1| =$ ______ I.e., A_1 can have 4, 5, 6, 7, 8, 9, or 10 *a*'s. 10 - 3 = 7. I.e., $|A_1|$ = the number of 6 combinations of $\{\infty \cdot a, \ \infty \cdot b\}$ = ______ Let A_2 = set of all 10-combinations of $\{\infty \cdot a, \ \infty \cdot b\}$ containing more than 9 *b*'s, $|A_2|$ = ______ $A_1 \cup A_2$ = set of all 10-combinations of $\{\infty \cdot a, \ \infty \cdot b\}$ containing more than 9 *b*'s = ______

$$\overline{A_1 \cup A_2} = \text{The number of 10-combinations of } \{3 \cdot a, 9 \cdot b\}$$
$$= \frac{(10+1)!}{10!1!} - (10-3) - (10-9) + 0 = 11 - 8 = 3$$

What if $3 \le n_i \le r - 1$? Use inclusion-exclusion (Usually).

Ex: The number of integral solutions to $\sum_{i=1}^{5} x_i = 20$ where $-2 \le x_i \le 7 \ \forall i$

= The number of integral solutions to $\sum_{i=1}^{5} y_i = 30$ where $0 \le y_i \le 9 \ \forall i$

= The number of 30-combinations of the
multiset
$$\{9 \cdot a_1, 9 \cdot a_2, 9 \cdot a_3, 9 \cdot a_4, 9 \cdot a_5\}$$

Pf: Let $y_i = x_i + 2$

See example in book for case when the number of a_i 's is not the same $\forall i$.

Let S = the set of integral solutions to $y_1 + y_2 + y_3 + y_4 + y_5 = 30$ where $0 \le y_i \ \forall i$

Then |S| = the number of permutations of $\{30 \cdot 1, 4 \cdot +\}$ =

For i = 1, 2, 3, 4, 5, let A_i = the set of integral solutions to $y_1 + y_2 + y_3 + y_4 + y_5 = 30$ where $10 \le y_i$

Ex:
$$(10, 5, 5, 5, 5) \in A_1, (0, 20, 7, 2, 1) \in A_2,$$

 $(0, 0, 10, 10, 10) \in A_3 \cap A_4 \cap A_5$

Then $\overline{\bigcup_{i=1}^{5} A_i}$ = the set of of integral solutions to $\sum_{i=1}^{5} y_i = 30$ where $0 \le y_i \le 9 \ \forall i$ Note $|A_1| = |A_2| = |A_3| = |A_4| = |A_5|$.

Note $|A_1|$ = The number of 30-combinations of the multiset $\{\infty \cdot a_1, \infty \cdot a_2, \infty \cdot a_3, \infty \cdot a_4, \infty \cdot a_5\}$ containing more than 9 a_1 's.

The number of 30-combinations of the multiset $\{\infty \cdot a_1, \infty \cdot a_2, \infty \cdot a_3, \infty \cdot a_4, \infty \cdot a_5\}$ containing at least 10 a_1 's.

= The number of 20-combinations of the multiset $\{\infty \cdot a_1, \infty \cdot a_2, \infty \cdot a_3, \infty \cdot a_4, \infty \cdot a_5\}$

= the set of integral solutions to $y_1 + y_2 + y_3 + y_4 + y_5 = 30$ where $y_1 \ge 10$ and $y_i \ge 0$ for i = 2, 3, 4, 5

= the set of integral solutions to $z_1 + z_2 + z_3 + z_4 + z_5 = 20$ where $z_i \ge 0$ for i = 1, 2, 3, 4, 5

Note $|A_i \cap A_j| = |A_1 \cap A_2|$ for $i \neq j$.

The number of 30-combinations of the multiset $\{\infty \cdot a_1, \infty \cdot a_2, \infty \cdot a_3, \infty \cdot a_4, \infty \cdot a_5\}$ containing at least 10 a_1 's and at least 10 a_2 's

The number of 10-combinations of the multiset $\{\infty \cdot a_1, \infty \cdot a_2, \infty \cdot a_3, \infty \cdot a_4, \infty \cdot a_5\} =$

Etc. (see class notes).

=

Read book for examples where the pairwise intersections are not all identical