
4.5.
Thm: Suppose that X is a finite totally ordered set. Then
X has a maximal element c ∈ X such that x < c for all
x ∈ X − {c}. Similarly, X has a minimal element a ∈ X
such that a < x for all x ∈ X − {a}.

Proof by induction on |X| = n.

n = 1. If X = {x1}, then x1 is both the minimal and
maximal of X.

n = k. Suppose for |X| = k that X has a maximal
element.

n = k + 1. Suppose |X| = k + 1.

Let b ∈ X. Then |X − {b}| = k.

Thus X − {b} has a maximal element c ∈ X − {b}.

Suppose b < c. Then c is the maximal element of X.

Suppose c < b. For all x ∈ X − {b, c}, x < c.

By transitivity x < b.

Thus b is the maximal element of X.

Similarly, X has a minimal element a ∈ X such that
a < x for all x ∈ X − {a}.
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5.1 Patterns from Pascal’s triangle

We create the table below where the entry in the nth row
and kth column is

C(n, k) = C(n− 1, k) + C(n− 1, k − 1).

C(n, 0) = 1 = # of 0-element subsets of S where |S| = n.

C(n, n) = 1 = # of n-element subsets of S where |S| = n.

Table for C(n, k)

n\k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

1 + 2 = 3; 1 + 2 + 3 = 6; 1 + 2 + 3 + 4 = 10; · · ·

Observe symmetry:

(
n
k

)
=

(
n

n− k

)

Sum any row:
n∑

i=0

(
n
i

)
= 2n
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5.2:

(x + y)2 = (x + y)(x + y) = x2 + 2xy + y2

(x+ y)3 = (x+ y)(x+ y)(x+ y) = x3 + 3x2y + 3xy2 + y3

(x + y)4 = (x + y)(x + y)(x + y)(x + y)
= x4 + 4x3y + 6x2y2 + 4xy3 + y4

Thm 5.2.1: (x + y)n =
n∑

k=0

(
n
k

)
xkyn−k

Proof Outline:

The terms of (x + y)n are of the form xkyn−k.

The coefficient of xkyn−k

= the number of ways to choose k x’s and (n− k) y’s

= the number of ways to choose k x’s from n x’s =

(
n
k

)
.

Alternatively,

The coefficient of xkyn−k

= the number of ways to choose k x’s and (n− k) y’s

= the number of permutations of the multiset

{k · x, (n− k) · y} =

(
n
k

)
.
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2nd proof of Thm 5.2.1: Induction (read textbook).

Obtain other formulas via substitution and algebraic
manipulation including differentiation.

Cor 5.2.2: (1 + x)n = (x + 1)n =
n∑

k=0

(
n
k

)
xk

Let x = 1 : 2n =
n∑

k=0

(
n
k

)

Let x = −1 : 0 = (−1 + 1)n =
n∑

k=0

(
n
k

)
(−1)k

I.e., 0 =

(
n
0

)
−
(
n
1

)
+

(
n
2

)
− ... + (−1)n

(
n
n

)
bn2 c∑
k=0

(
n
2k

)
(−1)k =

bn−1
2 c∑

k=0

(
n

2k + 1

)
(−1)k

bxc = floor of x = max {n ∈ Z | n ≤ x}

dxe = ceiling of x = min {n ∈ Z | n ≥ x}

Thus
bn2 c∑
k=0

(
n
2k

)
(−1)k = 1

2 (2n) = 2n−1
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and
bn−1

2 c∑
k=0

(
n

2k + 1

)
(−1)k = 1

2 (2n) = 2n−1
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