4.5.

Thm: Suppose that X is a finite totally ordered set. Then X has a maximal element $c \in X$ such that x < c for all $x \in X - \{c\}$. Similarly, X has a minimal element $a \in X$ such that a < x for all $x \in X - \{a\}$.

Proof by induction on |X| = n.

n = 1. If $X = \{x_1\}$, then x_1 is both the minimal and maximal of X.

n = k. Suppose for |X| = k that X has a maximal element.

n = k + 1. Suppose |X| = k + 1.

Let $b \in X$. Then $|X - \{b\}| = k$.

Thus $X - \{b\}$ has a maximal element $c \in X - \{b\}$.

Suppose b < c. Then c is the maximal element of X.

Suppose c < b. For all $x \in X - \{b, c\}, x < c$.

By transitivity x < b.

Thus b is the maximal element of X.

Similarly, X has a minimal element $a \in X$ such that a < x for all $x \in X - \{a\}$.

5.1 Patterns from Pascal's triangle

We create the table below where the entry in the nth row and kth column is

C(n,k) = C(n-1,k) + C(n-1,k-1). C(n,0) = 1 = # of 0 -element subsets of S where |S| = n. C(n,n) = 1 = # of n -element subsets of S where |S| = n.Table for C(n,k)

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1	7	21	35	35	21	7	1

1 + 2 = 3; 1 + 2 + 3 = 6; 1 + 2 + 3 + 4 = 10; \cdot

Observe symmetry: $\binom{n}{k} = \binom{n}{n-k}$

Sum any row: $\sum_{i=0}^{n} \binom{n}{i} = 2^{n}$

5.2:

$$(x+y)^{2} = (x+y)(x+y) = x^{2} + 2xy + y^{2}$$
$$(x+y)^{3} = (x+y)(x+y)(x+y) = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$
$$(x+y)^{4} = (x+y)(x+y)(x+y)(x+y)$$
$$= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$
$$Thm 5.2.1: (x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k}y^{n-k}$$
Proof Outline:

The terms of $(x+y)^n$ are of the form $x^k y^{n-k}$.

The coefficient of $x^k y^{n-k}$

- = the number of ways to choose k x's and (n k) y's
- = the number of ways to choose k x's from n x's = $\binom{n}{k}$.

Alternatively,

The coefficient of $x^k y^{n-k}$

= the number of ways to choose k x's and (n-k) y's

= the number of permutations of the multiset

$$\{k \cdot x, (n-k) \cdot y\} = \binom{n}{k}$$

2nd proof of Thm 5.2.1: Induction (read textbook).

Obtain other formulas via substitution and algebraic manipulation including differentiation.

Cor 5.2.2:
$$(1+x)^n = (x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Let $x = 1$: $2^n = \sum_{k=0}^n \binom{n}{k}$
Let $x = -1$: $0 = (-1+1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k$
I.e., $0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$
 $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} (-1)^k = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2k+1} (-1)^k$
 $\lfloor x \rfloor = \text{floor of } x = \max \{n \in \mathbb{Z} \mid n \le x\}$
 $\lceil x \rceil = \text{ceiling of } x = \min \{n \in \mathbb{Z} \mid n \ge x\}$
Thus $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} (-1)^k = \frac{1}{2} (2^n) = 2^{n-1}$

and
$$\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n}{2k+1}} (-1)^k = \frac{1}{2}(2^n) = 2^{n-1}$$