HW 5: Ch 4: 37, 44, 46, 48, 49, 51 (draw diagram for X_{3} instead of H_{4})

Defn: A partial order (\leq) is reflexive, anti-symmetric, and transitive.

Defn: A strict partial order ($<$) is irreflexive, anti-symmetric, and transitive.

Note: If $\leq \subset X \times X$ is a partial order, then

$$
<=\leq \text { - the diagonal is a strict partial order. }
$$

Defn: An equivalence relation is reflexive, symmetric, and transitive.

Defn: x and y are comparable if $x R y$ or $y R x$. Else x and y are incomparable.

Defn: A total order is a partial order where every pair of elements of X are comparable.

Thm 4.5.1: Suppose $|X|=n$. Then there exists a bijection between the total orders of X and the permutations of X. Hence there exists n ! different total orders on n.

Proof: Suppose $X=\{1, \ldots, n\}$ and suppose $f(1), f(2), \ldots, f(n)$ is a permutation of the elements of X.

Claim: $f(1) \leq f(2) \leq \ldots \leq f(n)$ defines a total order.
Note the above claim is equivalent to:
Claim: $f(i) \leq f(j)$ iff $i \leq j$ defines a total order on X.

Proof of claim:
Claim: \leq is reflexive. That is, $\forall x \in X, x \leq x$.

Claim: \leq is anti-symmetric. That is, if $x \leq y$ and $y \leq x$, then $x=y$.

Claim: \leq is transitive. That is, if $x \leq y$ and $y \leq z$, then $x \leq z$.

Thus \leq is a partial order.
Note every pair of elements of X is comparable. Thus \leq is a total order.

Suppose we have a total order \leq on X.
Claim: We can order the elements of X as follows:

$$
f(1) \leq f(2) \leq \ldots \leq f(n) \text { for some permutation of } X
$$

Proof by induction on $n=|X|$.
Suppose $n=1$:

Suppose that if $|X|=n-1$, we can order the elements of X as follows: $f(1) \leq f(2) \leq \ldots \leq f(n-1)$ for some permutation of X.

Suppose $|X|=n$.

Note that we have shown a $1: 1$ correspondence between permutations of X and total orders of X. Hence there exists n ! different total orders on n.

