Thm 4.5.1: Suppose |X| = n. Then there exists a bijection between the total orders of X and the permutations of X. Hence there exists n! different total orders on n.

Proof: Suppose $X = \{1, ..., n\}$ and suppose f(1), f(2), ..., f(n) is a permutation of the elements of X.

Claim: $f(1) \leq f(2) \leq \dots \leq f(n)$ defines a total order.

Note the above claim is equivalent to: Claim: $f(i) \leq f(j)$ iff $i \leq j$ defines a total order on X.

Proof of claim:

Claim: \leq is reflexive. That is, $\forall x \in X, x \leq x$.

Claim: \leq is anti-symmetric. I.e., if $x \leq y$ and $y \leq x$, then x = y.

Claim: \leq is transitive. That is, if $x \leq y$ and $y \leq z$, then $x \leq z$.

Thus \leq is a partial order. Note every pair of elements of X is comparable. Thus \leq is a total order.

Suppose we have a total order \leq on X.

Claim: We can order the elements of X as follows: $f(1) \leq f(2) \leq ... \leq f(n)$ for some permutation of X.

Proof by induction on n = |X|.

Suppose n = 1:

Suppose that if |X| = n - 1, we can order the elements of X as follows: f(1) < f(2) < ... < f(n - 1) for some permutation of X. Suppose |X| = n.

Note that we have shown a 1:1 correspondence between permutations of X and total orders of X. Hence there exists n! different total orders on n. Defn: An equivalence relation is reflexive, symmetric, transitive. Ex: \cong_p is an equivalence relation where $x \cong_p y$ if $\frac{x-y}{p} \in \mathbb{Z}$ Claim: \cong_p is reflexive. That is, $\forall x \in X, x \cong_p x$.

Claim: \cong_p is symmetric. I.e., if $x \cong_p y$, then $y \cong_p x$.

Claim: \cong_p is transitive. I.e., if $x \cong_p y$ and $y \cong_p z$, then $x \cong_p z$.

Thus \cong_p is an equivalence relation.

Equivalence class $[a] = \{x \mid x \sim a\}$

For \cong_2

[4] =

[-2] =

[1] =

Ex: $\mathbb{Z} =$

www.geometrygames.org/TorusGames

$$\mathcal{P} = \{ P_{\alpha} \mid \alpha \in A \} \text{ is a partition of } X \text{ iff} \\ X = \bigcup_{P_{\alpha} \in \mathcal{P}} P_{\alpha}, \ P_{\alpha} \neq \emptyset \ \forall \alpha, \text{ and } P_{\alpha} \cap P_{\beta} \neq \emptyset \text{ implies } P_{\alpha} = P_{\beta}$$

Thm 4.5.3: If \sim is an equivalence relation on X, then $\{[x_{\alpha}] \mid x_{\alpha} \in X\}$ is a partition of X.

If $\mathcal{P} = \{P_{\alpha} \mid \alpha \in A\}$ is a partition of X, then $x \sim y$ iff $\exists P_{\alpha}$ such that $x, y \in P_{\alpha}$ is an equivalence relation.

Proof: Suppose ~ is an equivalence relation on X. Claim: $\{[x_{\alpha}] \mid x_{\alpha} \in X\}$ is a partition of X. Let $x_{\alpha} \in X$. Then $x_{\alpha} \in [x_{\alpha}]$ since ~ is reflexive. Thus $[x_{\alpha}] \neq \emptyset$ and $X = \bigcup_{x_{\alpha} \in X} [x_{\alpha}]$. Suppose $[x_{\alpha}] \cap [x_{\beta}] \neq \emptyset$. Claim: $[x_{\alpha}] = [x_{\beta}]$ Claim: $[x_{\alpha}] \subset [x_{\beta}]$ and $[x_{\beta}] \subset [x_{\alpha}]$ Claim: If $z \in [x_{\alpha}] = \{x \mid x \sim x_{\alpha}\}$, then $z \in [x_{\beta}] = \{x \mid x \sim x_{\beta}\}$ Proof of Claim: Since $z \in [x_{\alpha}], z \sim x_{\alpha}$. Since

Thus $[x_{\alpha}] \subset [x_{\beta}]$. Similarly $[x_{\beta}] \subset [x_{\alpha}]$.

Suppose $\mathcal{P} = \{ P_{\alpha} \mid a \in A \}.$

Claim: $x \sim y$ iff $\exists P_{\alpha} \in \mathcal{P}$ such that $x, y \in P_{\alpha}$ is an equivalence relation on X.

Proof of Claim: HW #44 (don't assume finite).