Let $K_{n}=$ the complete graph on n vertices.
That is $K_{n}=(V, E)$, where
$V=$ the vertices of $K_{n}=\left\{v_{1}, \ldots, v_{n}\right\}$,
$E=$ the edges of $K_{n}=\left\{\left\{v_{i}, v_{j}\right\} \mid 1 \leq i<j \leq n\right\}$
$K_{1}=\quad K_{2}=\quad K_{3}=\quad K_{4}=$
$K_{5}=$

$$
K_{6}=
$$

Example of a Ramsey theorem: In a group of 6 people, there are either 3 who know each other or 3 who are strangers to each other.

Ramsey number $=r(s, t)=\min \left\{n \mid\right.$ if the edges of K_{n} are colored red and blue, then there exists either a red K_{s} or a blue $\left.K_{t}\right\}$
$r(3,3)=6 \quad r(s, t)=r(t, s) \quad r(s, 2)=r(2, s)=s$
Thm (Erdos and Szekeres): $r(s, t)$ is finite for all $s, t \geq 2$. If $s>2, t>2$, then

$$
\begin{gathered}
r(s, t) \leq r(s-1, t)+r(s, t-1) \\
r(s, t) \leq\binom{ s+t-2}{s-1}
\end{gathered}
$$

$r\left(s_{1}, \ldots, s_{k}\right)=\min \left\{n \mid\right.$ if the edges of K_{n} are colored using k colors, there exist an i colored $\left.K_{s_{i}}\right\}$

Hypergraph: $(V, E), E \subset \mathcal{P}(V)$
$X^{(t)}=$ set of all t-tuples of X.
Ex: If $X=\{a, b, c, d\}$ then
$X^{(2)}=\{\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}\}=K_{4}$
$X^{(3)}=\{\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}\}$
$X^{(4)}=\{\{a, b, c, d\}\}$

A coloring of edges: $c: X^{(t)} \rightarrow\{$ red, blue $\}$
$Y \subset X$ is a red n set if $|Y|=n$ and $c\left(Y^{(t)}\right)=$ red.
$r_{t}\left(n_{1}, n_{2}\right)=\min \left\{m| | X \mid=m\right.$ implies $X^{(t)}$ has a red n_{1} set or a blue n_{2} set \}
$r_{2}(s, t)=r(s, t)$

