2.5 Combinations of Multisets

Thm 2.5.1 Let $S=\left\{\infty \cdot a_{1}, \ldots, \infty \cdot a_{k}\right\}$. Then the number of r-combinations of S is

Proof: The number of r-combinations of S
$=$ the number of integral solutions to the equation

$$
\begin{equation*}
x_{1}+x_{2}+\ldots+x_{k}=r \tag{*}
\end{equation*}
$$

where $x_{i} \geq 0 \forall i$ (and where $x_{i}=$ the number of a_{i} 's chosen for an r-combination).
$=$ the number of permutations of $\{r \cdot 1,(k-1) \cdot+\}$ by the following:

Suppose $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ is a solution to $\left(^{*}\right)$. This corresponds to the permutation $11 . . .1+1 . .1+\ldots+11 . .1$,
where there are $k-1+$'s and c_{1} 1's before the first,$+ c_{i} 1$'s between the (i-1)th and ith + 's for $i=2, \ldots, k-1$, and c_{k} 1's after the last + . Since $c_{1}+c_{2}+\ldots+c_{k}=r$, there are $r 1$'s, and thus $11 \ldots 1+1 . .1+\ldots+11 . .1$ is a permutations of $\{r \cdot 1,(k-1) \cdot+\}$.

A permutation of $\{r \cdot 1,(k-1) \cdot+\}$ corresponds to a solution $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ of $\left(^{*}\right)$ where $c_{1}=$ the number of 1 's before the first,$+ c_{i}=$ the number of 1's between the (i-1)th and ith + 's for $i=2, \ldots, k-1$, and $c_{k}=$ the number of 1 's after the last + . Since there are $r 1$'s, $c_{1}+c_{2}+\ldots+c_{k}=r$.

The number of permutations of $\{r \cdot 1,(k-1) \cdot+\}$ is

Corollary: Let $S=\left\{r \cdot a_{1}, \ldots, r \cdot a_{k}\right\}$. Then the number of r-combinations of S is

Proof:

Some examples

$S=\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{5}\right\}$.
Then a 4 -combination of S is $\left\{a_{3}, a_{3}, a_{3}, a_{5}\right\}$
Suppose $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=4$.
Then $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0,0,3,0,1)$ is a solution.
$++111++1$ is a permutation of $\{4 \cdot 1,(5-1) \cdot+\}$
$\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2,1,0,1,0)$ is a solution to
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=4$.
$11+1++1+$ is a permutation of $\{4 \cdot 1,(5-1) \cdot+\}$

A 4-combination of S is $\left\{a_{1}, a_{1}, a_{2}, a_{4}\right\}$
++++4 is a permutation of $\{4 \cdot 1,(5-1) \cdot+\}$
A 4-combination of S is $\left\{a_{5}, a_{5}, a_{5}, a_{5}\right\}$
$\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0,0,0,0,4)$ is a solution to $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=4$.

