2.5 Combinations of Multisets

Thm 2.5.1 Let $S = \{\infty \cdot a_1, ..., \infty \cdot a_k\}$. Then the number of *r*-combinations of *S* is

Proof: The number of r-combinations of S

= the number of integral solutions to the equation

 $x_1 + x_2 + \dots + x_k = r$ (*)

where $x_i \ge 0 \forall i$ (and where x_i = the number of a_i 's chosen for an r-combination).

= the number of permutations of $\{r \cdot 1, (k-1) \cdot +\}$ by the following:

Suppose $(c_1, c_2, ..., c_k)$ is a solution to (*). This corresponds to the permutation 11...1 + 1..1 + ... + 11..1,

where there are k - 1 +'s and c_1 1's before the first +, c_i 1's between the (i-1)th and ith +'s for i = 2, ..., k - 1, and c_k 1's after the last +. Since $c_1 + c_2 + ... + c_k = r$, there are r 1's, and thus 11...1 + 1..1 + ... + 11..1 is a permutations of $\{r \cdot 1, (k - 1) \cdot +\}$.

A permutation of $\{r \cdot 1, (k-1) \cdot +\}$ corresponds to a solution $(c_1, c_2, ..., c_k)$ of (*) where c_1 = the number of 1's before the first +, c_i = the number of 1's between the (i-1)th and ith +'s for i = 2, ..., k - 1, and c_k = the number of 1's after the last +. Since there are r 1's, $c_1 + c_2 + ... + c_k = r$.

The number of permutations of $\{r \cdot 1, (k-1) \cdot +\}$ is

Corollary: Let $S = \{r \cdot a_1, ..., r \cdot a_k\}$. Then the number of r-combinations of S is

Proof:

Some examples

 $S = \{\infty \cdot a_1, \infty \cdot a_2, ..., \infty \cdot a_5\}.$

Then a 4-combination of S is $\{a_3, a_3, a_3, a_5\}$

Suppose $x_1 + x_2 + x_3 + x_4 + x_5 = 4$. Then $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 3, 0, 1)$ is a solution.

+ + 111 + + 1 is a permutation of $\{4 \cdot 1, (5-1) \cdot +\}$

 $(x_1, x_2, x_3, x_4, x_5) = (2, 1, 0, 1, 0)$ is a solution to $x_1 + x_2 + x_3 + x_4 + x_5 = 4.$

A 4-combination of S is $\{a_1, a_1, a_2, a_4\}$

++++4 is a permutation of $\{4 \cdot 1, (5-1) \cdot +\}$

A 4-combination of S is $\{a_5, a_5, a_5, a_5\}$

 $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 0, 0, 4)$ is a solution to $x_1 + x_2 + x_3 + x_4 + x_5 = 4.$