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Abstract. We give necessary and sufficient combinatorial conditions characterizing the class of
decision tasks that can be solved in a wait-free manner by asynchronous processes that communicate
by reading and writing a shared memory.

We introduce a new formalism for tasks, based on notions from classical algebraic and combinato-
rial topology, in which a task’s possible input and output values are each associated with high-
dimensional geometric structures called simplicial complexes. We characterize computability in terms
of the topological properties of these complexes. This characterization has a surprising geometric
interpretation: a task is solvable if and only if the complex representing the task’s allowable inputs
can be mapped to the complex representing the task’s allowable outputs by a function satisfying
certain simple regularity properties.

Our formalism thus replaces the “operational” notion of a wait-free decision task, expressed in
terms of interleaved computations unfolding in time, by a static “combinatorial” description
expressed in terms of relations among topological spaces. This allows us to exploit powerful theorems
from the classic literature on algebraic and combinatorial topology. The approach yields the first
impossibility results for several long-standing open problems in distributed computing, such as the
“renaming” problem of Attiya et al., and the “k-set agreement” problem of Chaudhuri.

Preliminary versions of these results appeared as HERLIHY, M. P., AND SHAVIT, N. 1993. The
asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp. 111–120,
and HERLIHY, M. P., AND SHAVIT, N. 1994. A simple constructive computability theorem for wait-free
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The work of M. Herlihy was supported by NSF grant DMS 95-05949.
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Authors’ addresses: M. Herlihy, Computer Science Department, Brown University, Box 1910,
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�

TVSXSGSP � � GSRXMRYSYW f : |Ĩ| � |Õ| GEVVMIH�F] �̃
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• Synchronous Byzantine computability by shellability
1. Different layer of interpretation

• Round-by-round interpretation of messages

• We cannot validate messages from the last round

2. Topological upper bound, algorithmic lower bound
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2.2 Computability – Randomization and Stabilization

I intend to continue my research on distributed computability, identifying solvability conditions for tasks
described in a general, abstract way. My medium- to long-term research agenda focuses on protocols that
rely on randomization, failure detectors (which model practical mechanisms that assess peer availability
in distributed systems), and other dynamic stabilization mechanisms. I plan to keep using the tools and
language of combinatorial topology, since (1) they often expose novel results with more model-independent,
existential arguments, instead of model-specific, (complicated) constructive arguments; and (2) they expose
fundamental reasons for impossibility results, by means of expressive characterizations.

With randomized protocols, an eventual property (based on probability) ensures probabilistic progress
and termination for the distributed algorithm, making solvable otherwise unsolvable tasks. Also, with failure
detectors that are only eventually effective, problems otherwise impossible become possible. I plan to use the
topology-based language/approach to model and analyze both scenarios, hopefully situating them together
in a wider scope of protocols – protocols depending on a certain kind of dynamic, eventual stabilization for
progress and termination. With the expressive and elegant language of combinatorial topology, this research
can potentially bring valuable mathematical insight into key areas of theoretical distributed computing.

2.3 Systems – Concurrency, Parallelism, and Large-Scale Data Processing

Concurrent data structures and algorithms avoid non-scalable, blocking operations – such as locks – and are
increasingly critical for their improved fault-tolerance and scalability. However, implementing concurrent
algorithms often requires programmers to think too much in terms of architecture (e.g. cache and memory
models), and low-level synchronization details, instead of focusing on the actual functional requirements. I
plan to focus my research on designing novel concurrency techniques, not only improving the “concurrent
programmer’s toolbox,” but particularly considering how they can speed up large-scale data processing sys-
tems. Incorporating these techniques into operating systems, programming languages, and (big)data systems
is essential to promote the full benefit of these techniques. I believe that coupling hardware transactional
memory with well-established software techniques such as randomization, boosting, elimination, etc, has
enormous potential to promote scalability in a variety of settings.

The application of concurrency techniques to large-scale data processing systems must be attentive
to ever-changing operational settings, such as energy-efficient computing, increasingly large clusters and
NUMA multiprocessor systems, heterogeneous multicore machines, or GPGPU systems (or other kinds of
hardware accelerators). Research on concurrent data structures and algorithms, and its potential to promote
scalability in large-scale data processing systems, is critical for the data-intensive applications of tomorrow.
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