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(Using a primitive called Reliable Broadcast )
(Message contents are consistent )
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[ Reliable Broadcast! |

Real problem is:

(Py. v0) (P, v4)

,,,,,, Byzantine processes
pick fake inputs...

(Py, vs) ... yet behave “correctly”

(Pr,v1)
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Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

its dual crash-failure task (Z, O, /
translated from (Z, 0, A) ANt S

solvable.

In [STOC 4], we show what is the dual task,

and how the equivalence holds
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Theorem:

For any colorless task (Z*, O*, A*), if

. n+ 1> t(dim(Z*) + 2)

2. 3 continuous map f : | skel’(Z*)| — |O*| carried by A*,

we have a t-resilient Byzantine asynchronous protocol.

Proof sketch:

|. Run the Byzantine strict (¢

1)-set agreement protocol,

landing on a simplex in skel”(Z*).

* Exchange values via Reliable Broadcast, and pick the 'smallest’ one
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2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

{anvl} é {00701702}

@;ycentric Agreement tasO k

Agree on vertices of a
_single simplex of Bary o

(protocol based on the e-multidimensional agreement!) [STOC |3]
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hypothesis
A

By the Simplicial Approximation Theorem,|f : | skel' (Z*)| — |0
has a simplicial approximation

[BaryNJskelt(I*) — O™for some N > 0.
/

fine-grain the input, so we can
“approximate” f by a simplicial map

We then...
3 Apply ¢ : Bary” skel’(Z*) — O* to choose vertices in O*.

(because it’s a simplicial approximation, choosing outputs based on
the approximation is consistent with choosing outputs based on f)



|. Introduction
2. Asynchronous Byzantine Systems
3. Synchronous Byzantine Systems

4. Conclusion & Future Work




|. Introduction
2. Asynchronous Byzantine Systems
@ Synchronous Byzantine Systems

4. Conclusion & Future Work

32




|. Introduction
2. Asynchronous Byzantine Systems
@ S)’nChrOnOUS Byzantine S)’Stems quick overview

4. Conclusion & Future Work

32




Protocol Complex




Protocol Complex

Before




Protocol Complex

Before

[ Tasks modeled as simplicial complexes ]




Protocol Complex

Before

[ Tasks modeled as simplicial complexes ]

Now




Protocol Complex

Before

[ Tasks modeled as simplicial complexes ]

Now

[Executions also modeled as simplicial complexes]




Protocol Complex

Before

[ Tasks modeled as simplicial complexes ]

Now

[E(xecutions also modeled as simplicial complexeﬁ

Global state evolving throughout the rounds

33




Protocol Complex

Before

[ Tasks modeled as simplicial complexes ]

Now

[E(xecutions also modeled as simplicial complexeﬁ

Global state evolving throughout the rounds

[Protocol Complex]

33




Protocol Complexes




Protocol Complexes




Protocol Complexes

(_Consensus cask ] t =




Protocol Complexes
input O/O\O
P Ps




Protocol Complexes
input O/O\O
P Ps

round 1:
P Afails

34




Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34




Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34




Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34




Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34




Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34




Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34




Protocol Complexes

EEma

input O/O\O
Ps Ps
3

P

Py

round 1:
P Afails

P, Ps

“  0—0 —0 0—0
outpu

34




Protocol Complexes

EEma

input O/O\O connected
Ps Py

Ps Ps

P, s

round 1:
P Afails

“  0—0 —0 0—0
outpu

34




Protocol Complexes

EEma

input O/O\O connected
Py Ps
Ps Py
connected
P, s

round 1:
P Afails

“  0—0 —0 0—0
outpu

34




Protocol Complexes

(_Consensus cask ] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

34




Protocol Complexes

(_Consensus cask ] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

34




Protocol Complexes

(_Consensus cask ] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34




Protocol Complexes

(_Consensus cask ] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34




Protocol Complexes

(_Consensus cask ] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34




Protocol Complexes

(_Consensus cask ] t =

Py
input O/O\O connected
Py P
P3 P,
? ?
P, P3

round 1:
P Afails

connected

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34




Protocol Complexes

(_Consensus cask ] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

35




Protocol Complexes

(_Consensus cask ] t = -

input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

round 2:
no failures

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

35




Protocol Complexes

(_Consensus cask ] t = -

input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

round 2:
no failures

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

35




Protocol Complexes

(_Consensus cask ] t = -

input O/O\O connected
Py P

3

P3 P2

round 1:
P Afails

connected

round 2:

no failures @ @
Py Ps

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35




Protocol Complexes

(_Consensus cask ] t = -

input O/O\O connected
Py P

3

P3 P2

round 1:
P Afails

connected

round 2:

no failures @ @
Py Ps

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35




Protocol Complexes

(_Consensus cask ] t = -

input O/O\O connected
P2 P3

P3 P2

round 1:
P Afails

connected

PQ P3

round 2:

no failures @ @ % %
P2 P3 P2 P3

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35




Protocol Complexes

(_Consensus cask ] t = -

input O/O\O connected
P2 P3

P3 P2

round 1:
P Afails

connected

PQ P3

round 2:

no failures @ @ % %
P2 P3 P2 P3

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35




Protocol Complexes

[ Consensus task j t =1

Py
input Q/CD\O connected
round 1: E connected
P Afails

Py P P3

round 2: @ @ @ @
no failures @ @
P PQ PS

P 3 disconnected
e TO0—0 0—0  0—=0

35




Protocol Complexes

[ Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output Q O Q O Q O

35




Protocol Complexes

[ Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output Q O Q O Q O

35




Protocol Complexes

[ Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output O O Q O Q O

35




Protocol Complexes

[ Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output O O Q O Q O

35




Protocol Complexes

[ Consensus task j t=1

Py
input Q/CD\O connected
P2 PS
P3 P2
round 1: E connected
P Afails
23 s
Py

PS P2 P3

round 2: < ES @ @ @ disconnected
no failures @ @ % %
Py P3 Py Ps

output PQO ©P3 PQQ ©P3 PQQ {)P 3 disconnected

35




Protocol Complexes

[ Consensus task j t=1

Py
input Q/CD\O connected
P2 PS
P3 P2
round 1: E connected
P Afails
23 s
Py

PS P2 P3

round 2: < ES @ @ @ disconnected
no failures @ @ % %
Py P3 Py Ps

output PQO ©P3 PQQ OPB PQQ {)P 3 disconnected

35




Protocol Complexes

[ Consensus task j t=1

Py
input Q/CD\O connected
P2 PS
P3 P2
round 1: E connected
P Afails
23 s
Py

PS P2 P3

round 2: < ES @ @ @ disconnected
no failures @ @ % %
Py P3 Py Ps

output PQO ©P3 PZC} {)P3 PQQ {)P 3 disconnected

35




With Crash Failures...

Herlihy & Rajsbaum 2000




With Crash Failures...

Herlihy & Rajsbaum 2000

Ko=1"

VAN

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

Ko=1"

VAN

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

ICO =7 /Cl — RC(/CQ, k)

A O

(k — 1)-connected

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

ICO =1 ICl — RC(IC()?]/G\SI

A O

(k — 1)-connected

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko = I* K1 = Rc(lCo,léﬂ Ko = Ro(K1, k)

A O O

(k — 1)-connected (k — 1)-connected

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = RC(IC07]/€\5| Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

Theorem:

While the protocol complex is (k — 1)-connected,
we cannot solve the k-set agreement task

36




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

37




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

Theorem:

We cannot solve k-set agreement with ¢ failures
in |t/k] or less rounds.

37




With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = RC(IC07]/€\5| Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

Theorem:
We cannot solve k-set agreement with ¢ failures

in |t/k| or less rounds. [We have a |¢/k| + 1 PrOtOCOO

37




Byzantine Equivocation

Is equivocation a problem
in synchronous systems?




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of

Ex.: 4 processes, 1 failure




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of

you know this
Ex.: 4 processes)| 1 failure i




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

L] L] L] L]




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

B AN

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

[22]{Z2f{72]_]

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner nodes:)

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdes:)

( validated ) | 1L I:I

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdes:)

( validated ) an I:I
( Leaf nodes: ) I:”:”:”:I

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdes:)

( validated ) I:I
Leaf nodes: )
( = nEnc?: validated) DI:”:”:I

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdesz)

( validated ) I:I
Leaf nodes: )
( = nEn;f validated) DI:”:”:I

(Last-round equivocation is problematic..)

38




Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner n9des:)

( validated ) I:I
Leaf nodes: )
( = nEn;f validated) DI:”:”:I

(Last-round equivocation is problematic..]
... if Byzantine processes
(do not “reveal” themselves

38







We define a new round operator




We define a new round operator

KCo=1"

VAN

39




We define a new round operator

I* 1 ]C(), Kl)

connected connected

39




We define a new round operator

I* 1 ]C(), Kl)

connected connected

't/k| rounds

39




We define a new round operator

=7 K

A Q’ @’

connected connected

't/k| rounds if £ mod k £ 0

39




We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

39




We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

[t/k| rounds

39




We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

k-set agreement protocol

[t/k| rounds

39




We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

k-set agreement protocol
Generalize the consensus protocol

[t/k| rounds

39




The Equivocation Operator




The Equivocation Operator

|t/k] rounds,
k failures/round




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(PQvSC)

(Plvsb)

(POan)




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

Let’s focus on
.- these two...

(Plvsb)

(POan)

40




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

Let’s focus on
.- these two...

’

-----------

(Po,Sd) \0.0 ?j

------------

40




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

Let’s focus on
.- these two...

’

-----------

(Po,Sd) \0.0 ?j

------------

40




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(Po,Sd) \0.0 ?j

L4

-----------

4]




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(Po,Sd) \0.0 ?j

L4

-----------

4]




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(Po,Sd) \0.0 ?j

L4

-----------

4]




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(POan)




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

4]




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

4]




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

42




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

0]0)0)

QOO0 000
000 000

Y

0]0)0)

-

42




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

43




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

0]0)0)

QOO0 000
000 000

Y

0]0)0)

-

43




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

43




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

P Py —\ /—

43




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

©])@) 000
000 000
P 1 P, 2 /—
0@0—000 _—
[0]0]0)

43




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

©] ]@) 0eo
000 000
P Py —\ /—
0@0—000 QL
O0O0—0O00

43




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

P P —\ /—

O
O
[
S
O
O
O
O
O

(,
|
|
|

O
O
C|>
O
O
O

{,
(

43




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

00 0o
000 000
P 1 P, 2 f
0@0—000 QL
CeO0—0O00
P 2 P 1




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

O0O0. 0]"]0,
000 000
P; P, —d\ /
000—000 QOO
( Shellable )
O0O0—0O00
P 2 P 1




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

O0O0. QOO0
000 000
P Py —d\ /
0®0—000 —
( Shellable )

((#procs - 2)-connected)




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

44




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

44




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

44




The Equivocation Operator

|t/k] rounds,

. (k — 1)-connected
k failures/round

44




The Equivocation Operator

|t/k] rounds,

. (k — 1)-connected
k failures/round

44




The Equivocation Operator

|t/k] rounds,

, .o o (k — 1)-connected
k failures/round




The Equivocation Operator

|t/k] rounds,

. (k — 1)-connected
k failures/round




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

45




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

45




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(k — 1)-connected

(k — 1)-connected




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

RN\

‘000

(k — 1)-connected

g2t~ (k — 1)-connected
©oo e

N

[Extend throughout structure]




The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

BN N\

‘000

(k — 1)-connected

7= (k — 1)-connected
©00

Extend throughout structure )
Subsequent applications of the Nerve Lemma)

45




Strategy, Again

We match the bound with an algorithm

(k — 1)-connected (k — 1)-connected (k — 1)-connected

|t/k| rounds if £ mod k £ 0

't/k| rounds

46




Strategy, Again

We match the bound with an algorithm

(k — 1)-connected (k — 1)-connected (% — 1)-connected

|t/k| rounds if £ mod k £ 0

k-set agreement protocol

't/k| rounds

46




Strategy, Again

We match the bound with an algorithm

(k — 1)-connected (k — 1)-connected (k — 1)-connected
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Generalize the consensus protocol
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® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model
® Reliable Broadcast
2.  A“layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

® Synchronous Byzantine computability by shellability

|.  Different layer of interpretation
® Round-by-round interpretation of messages
® We cannot validate messages from the last round

2. Topological upper bound, algorithmic lower bound
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Future Work (i.e. Research Questions)

® Randomized Protocols

® Many impossible problems (in a deterministic setting)
now become possible

® Complexity
® Particularly in asynchronous systems

® Proofs are not constructive

® Failure Detectors

® Allow us to detect the crash of peer processes

® Again, many impossible problems now become possible
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