(@O

L\ /

&/

Byzantine Computability and
Combinatorial Topology

Hammurabi Mendes
University of Rochester

Applied Algebraic Topology Research Network
November 10, 2015

joint work with Maurice Herlihy, Christine Tasson, done at Brown University

|. Introduction
2. Asynchronous Byzantine Systems
3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Outline
@ Introduction

2. Asynchronous Byzantine Systems
3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Introduction

Introduction

Tasks:

Introduction

Tasks:

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

.
‘e
- .
. .
.
- .
.
. .
.
- .
.
- .
.
.

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

.
‘e
- .
. .
.
. .
.
. .,
. ..
- .
.
.

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Protocol:

Algorithm solving tasks

[Consensus task j

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Motivation:

When are tasks solvable?

[Consensus task j

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Motivation of the work:
When are tasks solvable?

Introduction

Tasks:

Processes input values from a set{ (o] (01 (v2] (v3] }

Processes output values a single proposed value

Motivation of the work:
When are tasks solvable!?

Motivation of the talk:

Overview the research area for the AATRN
Create collaboration bridges

Introduction

Tasks:

® Message-passing
® Complete communication graph

® Senders reliably identified

® FIFO delivery for each pair

Introduction

Tasks:

® Message-passing
® Complete communication graph

® Senders reliably identified

® FIFO delivery for each pair

Introduction

Tasks:

® Message-passing
® Complete communication graph

® Senders reliably identified

® FIFO delivery for each pair

Trivial?

Introduction

Tasks:

® Message-passing
® Complete communication graph

® Senders reliably identified

® FIFO delivery for each pair

Failures & Synchrony

Failures & Synchrony

Processes subject to failures

Failures & Synchrony

Processes subject to failures

[Cl‘aSh failuresj ... ha|t|ng failures

Failures & Synchrony

Processes subject to failures

[Crash failureSJ ... ha|t|ng failures

[Byzantine failures] .. arbitrary failures

Failures & Synchrony

Processes subject to failures

[Crash failuresj ... ha|t|ng failures

[Byzantine failuresj .. arbitrary failures

Messages subject to delivery semantics

Failures & Synchrony

Processes subject to failures

[Crash failuresj ... ha|t|ng failures

[Byzantine failures] .. arbitrary failures

Messages subject to delivery semantics

[Synchronous systemsj ----------- round tick: messages delivered

Failures & Synchrony

Processes subject to failures

[Crash failuresj ... ha|t|ng failures

[Byzantine failures] .. arbitrary failures

Messages subject to delivery semantics

[Synchronous systemsj ----------- round tick: messages delivered

[Asynchronous systemsj ----------- messages delivered eventually

Failures & Synchrony

Processes subject to failures

[Crash failuresj ... ha|t|ng failures

* [Byzantine failures] .. arbitrary failures

Messages subject to delivery semantics

X [Synchronous systemsj ----------- round tick: messages delivered

k [Asynchronous systemsj ----------- messages delivered eventually

Asynchrony + Failures

Asynchronous Systems,
Byzantine Failures

n=41t=1

Asynchrony + Failures

of processes

Asynchronous Systems,
\ Byzantine Failures

n=41t=1

Asynchrony + Failures

known max # of
of processes :
Byzantine procs

Asynchronous Systems,
\ / Byzantine Failures

n=41t=1

Asynchrony + Failures

known max # of
of processes :
Byzantine procs

Asynchronous Systems,
\ / Byzantine Failures

n=41t=1

(2,¢)

]

Asynchrony + Failures

known max # of
of processes :
Byzantine procs

Asynchronous Systems,
\ / Byzantine Failures

n=41t=1

(2,¢)

Asynchrony + Failures

known max # of
of processes :
Byzantine procs

Asynchronous Systems,
\ / Byzantine Failures

n=41t=1

(2,¢)

(Don’t know when it is delivered)

Asynchrony + Failures

known max # of
of processes :
Byzantine procs

Asynchronous Systems,
\ / Byzantine Failures

n=41t=1

(2,¢)

Don’t know when it is delivered)
When it does, the sender is correct)

Asynchrony + Failures

known max # of
of processes :
Byzantine procs

Asynchronous Systems,
\ / Byzantine Failures

n=41t=1

(2,¢)

Don’t know when it is delivered)
When it does, the sender is correct)

Reliable
Broadcast

The Equivocation Issue

Call it “broadcast’ but. ..

The Equivocation Issue

Call it “broadcast’ but. ..

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
e,
L
L
.
"
L
L
"
L
.
L
L
"
.
.
L
.
.
.
.
.
.
"
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e
.

The Equivocation Issue

Call it “broadcast’ but. ..

The Equivocation Issue

Call it “broadcast’ but. ..

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
e,
L
L
.
"
L
L
"
L
.
L
L
"
.
.
L
.
.
.
.
.
.
"
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e
.

The Equivocation Issue

Call it “broadcast’ but. ..

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
e,
L
L
.
"
L
L
"
L
.
L
L
"
.
.
L
.
.
.
.
.
.
"
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e
.

The Equivocation Issue

Call it “broadcast’ but. ..

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
e,
L
L
.
"
L
L
"
L
.
L
L
"
.
.
L
.
.
.
.
.
.
"
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e
.

The Equivocation Issue

Call it “broadcast’ but. ..

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
e,
L
L
.
"
L
L
"
L
.
L
L
"
.
.
L
.
.
.
.
.
.
"
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e
.

(Using a primitive called Reliable Broadcast)

The Equivocation Issue

Call it “broadcast’ but. ..

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
e,
L
L
.
"
L
L
"
L
.
L
L
"
.
.
L
.
.
.
.
.
.
"
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e
.

(Using a primitive called Reliable Broadcast)
(Message contents are consistent)

Full-Information
Protocols

Full-Information Protocols

Protocol = distributed algorithm

S <— Iz
forr:1 —+ Rdo
Send s via reliable broadcast
while less than (n + 1) — ¢ messages do
Receive an r-round message M

s+ sU{M}

return /(s)

Full-Information Protocols

Protocol = distributed algorithm

initial state: @ % I')
. t (/
P forr:1 —+ Rdo
Send s via reliable broadcast
while less than (n + 1) — ¢ messages do
Receive an r-round message M

s+ sU{M}

return /(s)

Full-Information Protocols

Protocol = distributed algorithm

initial state:

. S%IZ'
input

forr : 1 — R)do
Send s via reliable broadcast
while less than (n + 1) — ¢ messages do
Receive an r-round message M

s+ sU{M}

return /(s)

Full-Information Protocols

Protocol = distributed algorithm

initial state:
input

S < Iz
forr:1— Rdo
Send s via(reliable broadcast)

while less than (n + 1) — ¢ messages do
Receive an r-round message M

s+ sU{M}
return /(s)

Full-Information Protocols

Protocol = distributed algorithm

initial state:

. S%IZ'
input

forr:1 — Rdo
Send s via reliable broadcast |
while(less than (1 + 1) — ¢ Jnessages do | "' 2 Mueh
. as you can...
Receive an r-round message M

s+ sU{M}

return /(s)

Full-Information Protocols

Protocol = distributed algorithm

|n|t;2l suttate: o Iz'
g forr: 1 — Rdo
Send s via reliable broadcast
exchange wait as much

while less than (n + 1) — ¢ messages do
Receive an r-round message M

(s < sU{M})
return /(s)

states aS you can...

Full-Information Protocols

Protocol = distributed algorithm

|n|t;2l suttate: o Iz'
g forr: 1 — Rdo
Send s via reliable broadcast
exchange wait as much

while less than (n + 1) — ¢ messages do
Receive an r-round message M

s+ sU{M}

decide return

states aS you can...

Full-Information Protocols

Protocol = distributed algorithm

init:?]l suttate: s« I
" forr:1 — Rdo
Send s via reliable broadcast |
eﬁl;:ensge while less than (n + 1) — ¢t messages do :;a'ytozscn;:(:h
Receive an r-round message M
s+ sU{M}
decide return §(s)

Modeling
Tasks

Tasks and Simplicial Complexes

[Tasks modeled as simplicial complexes J

Tasks and Simplicial Complexes

[Tasks modeled as simplicial complexes]

[Solvability in terms of topological properties]

Tasks and Simplicial Complexes

[Tasks modeled as simplicial complexes]

[Solvability in terms of topological properties]

[Let’s start with crash failures)

Many Simplexes — Simplicial Complex

Many Simplexes — Simplicial Complex

Many Simplexes — Simplicial Complex

Many Simplexes — Simplicial Complex

(P1,v4) (Fo, v3)

I (input complex)

Many Simplexes — Simplicial Complex

I (input complex)

Many Simplexes — Simplicial Complex

{(Po,v2), (P1,v2), (P2, v2)}

I (input complex)

Many Simplexes — Simplicial Complex

{(Po,v2), (P1,v2), (P2, v2)}

[(input complex) (D) (output complex)

Many Simplexes — Simplicial Complex

{(Po,v2), (P1,v2), (P2, v2)}

[(input complex) (D) (output complex)

The map A

L

{(Py,v9), (P1,v0), (Pa,v9)}

A

PO UQ Pl UQ PQ ’02

[(input complex) (D) (output complex)

The map A

VAN

{(Py,v9), (P1,v0), (Pa,v9)}

VN

PO UQ P1 UQ PQ ’02

[(input complex) (D) (output complex)

The map A

{(Po,v2), (P1,v2), (P2, v2)}

[(input complex) () (output complex)

The map A

(P1,v4) (Po,v3) {(Fo,v2), (P1,v2), (P2, v2)}

[(input complex) () (output complex)

The map A

A

{(Py,v9), (P1,v0), (Pa,v9)}

{(Po,v2), (P1,v2), (P2, v2)}

[(input complex) () (output complex)

The map A

/X

{(Py,v9), (P1,v0), (Pa,v9)}

{(Po,v2), (P1,v2), (P2, v2)}

[(input complex) () (output complex)

The map A

/X

{(Py,v9), (P1,v0), (Pa,v9)}

{(Po,v2), (P1,v2), (P2, v2)}

[(input complex) () (output complex)

The map A

L

{(Py,v9), (P1,v0), (Pa,v9)}

A

PO UQ Pl UQ PQ ’02

[(input complex) (D) (output complex)

Formal Specification

In the crash-failure model: (Z,0, A)

Formal Specification

In the crash-failure model: (Z,0, A)

[0 c L if o is an initial conﬁguration]

Formal Specification

In the crash-failure model: (Z,0, A)

[0 c L if o is an initial conﬂguration]

| dim(0) = nj

Formal Specification

In the crash-failure model: (Z,0, A)

[(7 c L if o is an initial conﬂguration]

| dim(0) = n)

(7 € O if 7 is a final configuration)

Formal Specification

In the crash-failure model: (Z,0, A)

[(7 c L if o is an initial conrguratlon]
me —n)

(7 € O if 7 is a final configuration)
me >n—¢)

Formal Specification

In the crash-failure model: (Z,0, A)

[a c L if o is an initial conrguratlon]
me —n)

(7 € O if 7 is a final configuration)
me >n—¢j

(7 € A(o) if finishing with 7 ...)

Formal Specification

In the crash-failure model: (Z,0, A)

[a c L if o is an initial conrguratlon]
me —n)

(7 € O if 7 is a final configuration)
me >n—¢j

(7 € A(o) if finishing with T ... |
(... is fine when starting with o]

Solvability in Terms of Topology

Solvability in Terms of Topology

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND
NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Solvability in Terms of Topology

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND
NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

[Crash-failure task is solvable if and only if j

Solvability in Terms of Topology

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND
NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

[Crash-failurg task is solvable if and only if]
Lcontinuous map f : |Z| — |O| carried by A J

Solvability in Terms of Topology

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND
NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

respects A

[Crash failure task is solvable if and only if]
Lcontlnuous map f : |Z| — \C’)\[carrled by &j

|. Introduction
2. Asynchronous Byzantine Systems
3. Synchronous Byzantine Systems

4. Conclusion & Future Work

|. Introduction
@ Asynchronous Byzantine Systems
3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Adversarial Model

Adversarial Model

(Byzantine processes |

Adversarial Model

Byzantine pr)
By processes j

|Up to ¢ chosen by adversary

Adversarial Model

[Byzantine pl;chssgsW]

|Up to ¢ chosen by adversary

Non-faulty processes output values...

Adversarial Model

[Byzantine pl;chssgsW]

|Up to ¢ chosen by adversary

Non-faulty processes output values...

consistent

Adversarial Model

(Byzantine processes |)

|Up to ¢ chosen by adversary

Non-faulty processes output values...
consistent

...input values of non-faulty processes

Adversarial Model

(Byzantine processes |)

|Up to ¢ chosen by adversary

Non-faulty processes [output values..)

consistent

...input values lof non-faulty processes
> JO Y P

A\

Adversarial Model

(Byzantine processes |)

|Up to ¢ chosen by adversary

Non-faulty processes output values..)

consistent

...input values lof non-faulty processes
> JO non-tauity p

A\

Adversarial Model

Byzantine pr)
By processes J

|Up to ¢ chosen by adversary

Non-faulty processes output values..)

consistent

...input values Jof non-faulty processes

A\

[A constrains non-faulty processes onlyj

Adversarial Model

(Byzantine processes |)

|Up to ¢ chosen by adversary

Non-faulty processes output values..)

consistent

...input values lof non-faulty processes
P 2 P

A\

What about Equivocation!?

What about Equivocation!?

Different information to different processes!

What about Equivocation!?

Different information to different processes?x

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Fo, vo)

(P2, v2)

(Pr,v1)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Fo, vo)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Fo, vo)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Fo, vo)

(P2, v2)

(Pr,v1)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Fo, vo)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(POaUO)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(POaUO)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(POaUO)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Py. v0) (P, v4)

’
s
4
s
s’
,I
s

(P2, v2)

(Pr,v1)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Py. v0) (P, v4)

,,,,,, Byzantine processes
pick fake inputs...

(P2, v2)

(Pr,v1)

What about Equivocation!?

Different information to different processes?x
[Reliable Broadcast! |

Real problem is:

(Py. v0) (P, v4)

,,,,,, Byzantine processes
pick fake inputs...

(Py, vs) ... yet behave “correctly”

(Pr,v1)

Formal Specification

In the Byzantine-failure model: (Z, 0, A)

Formal Specification

In the Byzantine-failure model: (Z, 0, A)

[0 c L if o is an initial conﬂguration]

| dim(0) = nj

Formal Specification

In the Byzantine-failure model: (Z, 0, A)

(non-faulty)

[0 cLif ois an‘4nitial conﬂguration]
| dim(0) = nj

Formal Specification

In the Byzantine-failure model: (Z, 0, A)

(non-faulty) Initially (n + 1) procs, but any

; , S : set of 0...¢ of them are faulty
[0 clifois an‘(nltlal configuration
| dim(o) = n

21

Formal Specification

In the Byzantine-failure model: (Z, 0, A)

(non-faulty) Initially (n + 1) procs, but any
: ; / — - set of 0...t of them are faulty
[(7 € 1 if o is an”initial configuration
| dim(o) = n

(7 € O if 7 is a final configuration)
me >n—¢)

21

Formal Specification

In the Byzantine-failure model: (Z, 0, A)

(non-faulty) Initially (n + 1) procs, but any

; , S : set of 0...¢ of them are faulty
[(7 clifois an‘(nltlal configuration | /
n

(non-faulty) Ldim (O-) —

(TeOifris a‘(nal configuration |
Ldlm) >n — tj

21

Formal Specification

2

In the Byzantine-failure model: (Z, 0, A)

(non-faulty) Initially (n + 1) procs, but any

; , S : set of 0...¢ of them are faulty
[a clifois an‘(nltlal configuration | /
n

(non-faulty) Ldim (O-) —

(TeOifris a‘(nal confguratlon]
Ldlm >n — tj

(7 € A(o) if finishing with T ... |
(... is fine when starting with o]

Formal Specification

2

In the Byzantine-failure model: (Z, 0, A)

(non-faulty) Initially (n + 1) procs, but any

; , S : set of 0...¢ of them are faulty
[a clifois an‘(nltlal configuration | /
n

(non-faulty) Ldim (O-) —

(TeOifris a‘(nal configuration |
Ldlm) >n — tj

(7 € A(o) if finishing with T ... |

\(non_faulty) (... is fine when starting with o]

Formal Specification

2

In the Byzantine-failure model: (Z, 0, A)

(non-faulty) Initially (n + 1) procs, but any

; , S : set of 0...¢ of them are faulty
[a clifois an‘(nltlal configuration | /
n

(non-faulty) Ldim (O-) —

(TeOifris a‘(nal configuration |
Ldlm) >n — tj

(7 € A(o) if finishing with T ... |

\(non_faulty) (... is fine when starting with o]
X

(non-faulty)

When are these
Byzantine tasks solvable!

Reduction to Crash-Failure Tasks

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

its dual crash-failure task (Z, O, A) solvable.

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

its dual crash-failure task (Z, O, A

P SRR

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

its dual crash-failure task (Z, O, A
translated from (Z, 0, A) -

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)
A Byzantine task (Z, O, A) solvable

solvable.

its dual crash-failure task
translated from (Z,0, A) -

In [STOC 4], we show what is the dual task,

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

its dual crash-failure task (Z, O, /
translated from (Z, 0, A) ANt S

solvable.

In [STOC 4], we show what is the dual task,

and how the equivalence holds

Algorithmic methods™
used to prove theorem

Algorithmic methods™
used to prove theorem

* simulations, reductions [STOC 4]

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

its dual crash-failure task (Z, O, A) solvable.

Reduction to Crash-Failure Tasks

Theorem: (Equivalence Theorem)

A Byzantine task (Z, O, A) solvable
<~

its dual crash-failure task (Z, O, A) solvable.

0

protocol < 3 continuous f : |Z| — |O| carried by A

Colorless
Tasks

26

Colorless Tasks

Colorless Tasks

Start with any of

Colorless Tasks

Vol [V2

Start with any of

rvl rvgw

Colorless Tasks

. Vo] | V2
Start with any of — — Finish with < k of
V1] |U3

Colorless Tasks

Vol (V2
Start with any of — — Finish with < k of

RS (k = 2)

Colorless Tasks

. Uo| | U2 Vo| (V2
Start with any of — — Finish with < k of — —
Lvl L/UBJ (k — 2)

rvlw 2]3‘

Colorless Tasks

. Uo| | U2 Vo| (V2
Start with any of — — Finish with < k of — —
Lvl L/USJ (k — 2)

rvlw 1]31

Colorless Tasks

. Vo[| V2 Vo[(V2
Start with any of — — Finish with < k of — —
RG] k=2 Y
O*
vo

/

27

Colorless Tasks

. Uo| | U2 Vo| (V2
Start with any of — — Finish with < k of — —
V1] |U3 V1] | U3
218 k=2 YL

O*

1 Vo
A = skel(]“é /
U1

27

Colorless Tasks

. Vo[| V2 Vo[(V2
Start with any of — — Finish with < k of — —
V1] | V3 V1] |U3
3 (k = 2) J

O*

1 Vo
A* = skel(]“é /
U1

27

Colorless Tasks

. Vo[| V2 Vo[(V2
Start with any of — — Finish with < k of — —
v Y8 (k = 2) Y Y8
O*
1
A* = skel(]“é /
U1

Simplexes of dim < 1

27

Colorless Tasks

. Uo| | U2 Vo| (V2
Start with any of — — Finish with < k of — —
Y (%3 k=2 Y
O*
1
A* = skel(kj /
U1

Simplexes of dim < 1

Theorems for Colorless Tasks

Theorems for Colorless Tasks

Theorem:

The strict (¢ + 1)-set agreement (Z*, O*, skel’) has a
t-resilient Byzantine asynchronous protocol iff

Theorems for Colorless Tasks

Theorem:

The strict (¢ + 1)-set agreement (Z*, O*, skel’) has a
t-resilient Byzantine asynchronous protocol iff

n+ 1> t(dim(Z*) + 2) or dim(Z*) < t.

Theorems for Colorless Tasks

Theorem:

The strict (¢ + 1)-set agreement (Z*, O*, skel’) has a
t-resilient Byzantine asynchronous protocol iff

(n + 1 > t(dim(Z*) + 2Dor dim(Z*) < t.

Theorems for Colorless Tasks

Theorem:

The strict (¢ + 1)-set agreement (Z*, O*, skel’) has a
t-resilient Byzantine asynchronous protocol iff

[n + 1 > t(dim(Z*) + 2Dor dim(Z*) < t.

(application of our Equivalence Theorem)

Theorems for Colorless Tasks

Theorems for Colorless Tasks

Theorem:
For any colorless task (Z*, O*, A*), if

Theorems for Colorless Tasks

Theorem:

For any colorless task (Z*, O*, A*), if
. n+ 1> t(dim(Z*) + 2)

Theorems for Colorless Tasks

Theorem:

For any colorless task (Z*, O*, A*), if
. n+ 1> t(dim(Z*) + 2)
2. 3 continuous map f : | skel’(Z*)| — |O*| carried by A*,

Theorems for Colorless Tasks

Theorem:

For any colorless task (Z*, O*, A*), if
. n+ 1> t(dim(Z*) + 2)
2. 3 continuous map f : | skel’(Z*)| — |O*| carried by A*,

we have a t-resilient Byzantine asynchronous protocol.

Theorems for Colorless Tasks

Theorem:

For any colorless task (Z*, O*, A*), if
. n+ 1> t(dim(Z*) + 2)
2. 3 continuous map f : | skel’(Z*)| — |O*| carried by A*,

we have a t-resilient Byzantine asynchronous protocol.

Proof sketch:

Theorems for Colorless Tasks

Theorem:

For any colorless task (Z*, O*, A*), if
. n+ 1> t(dim(Z*) + 2)
2. 3 continuous map f : | skel’(Z*)| — |O*| carried by A*,

we have a t-resilient Byzantine asynchronous protocol.

Proof sketch:

|. Run the Byzantine strict (¢ + 1)-set agreement protocol,
landing on a simplex in skel”(Z*).

Theorems for Colorless Tasks

Theorem:

For any colorless task (Z*, O*, A*), if

. n+ 1> t(dim(Z*) + 2)

2. 3 continuous map f : | skel’(Z*)| — |O*| carried by A*,

we have a t-resilient Byzantine asynchronous protocol.

Proof sketch:

|. Run the Byzantine strict (¢

1)-set agreement protocol,

landing on a simplex in skel”(Z*).

* Exchange values via Reliable Broadcast, and pick the 'smallest’ one

Proof Sketch (contd.)

2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

Proof Sketch (contd.)

2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

Proof Sketch (contd.)

2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

30

3

0

Proof Sketch (contd.)

2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

{anvl} é {00701702}

[Barycentric Agreement task j &

Proof Sketch (contd.)

2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

{anvl} é {00701702}

@;ycentric Agreement tasl§_J k

Agree on vertices of a
_single simplex of Bary o

30

Proof Sketch (contd.)

2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

{anvl} é {00701702}

@;ycentric Agreement tasl§_J k

Agree on vertices of a
_single simplex of Bary o

30

Proof Sketch (contd.)

2 Run the Byzantine barycentric agreement protocol N times,
landing on a simplex in Bary”" skel’(Z*).

{anvl} é {00701702}

@;ycentric Agreement tasO k

Agree on vertices of a
_single simplex of Bary o

(protocol based on the e-multidimensional agreement!) [STOC |3]

30

Proof Sketch (contd.)

Proof Sketch (contd.)

By the Simplicial Approximation Theorem, f : | skel®(Z*)| — |O*]
has a simplicial approximation

Proof Sketch (contd.)

hypothesis
A

By the Simplicial Approximation Theorem,|f : | skel' (Z*)| — |0
has a simplicial approximation

Proof Sketch (contd.)

hypothesis
A

By the Simplicial Approximation Theorem,|f : | skel' (Z*)| — |0
has a simplicial approximation

Bary” skel’(Z*) — O*for some N > 0.

Proof Sketch (contd.)

hypothesis
A

By the Simplicial Approximation Theorem,|f : | skel' (Z*)| — |0
has a simplicial approximation

(BaryN]skelt(I*) — O™for some N > 0.
/

fine-grain the input, so we can
“approximate” f by a simplicial map

Proof Sketch (contd.)

hypothesis
A

By the Simplicial Approximation Theorem,|f : | skel' (Z*)| — |0
has a simplicial approximation

[BaryNJskelt(I*) — O™for some N > 0.
/

fine-grain the input, so we can
“approximate” f by a simplicial map

We then...
3 Apply ¢ : Bary” skel’(Z*) — O* to choose vertices in O*.

Proof Sketch (contd.)

hypothesis
A

By the Simplicial Approximation Theorem,|f : | skel' (Z*)| — |0
has a simplicial approximation

[BaryNJskelt(I*) — O™for some N > 0.
/

fine-grain the input, so we can
“approximate” f by a simplicial map

We then...
3 Apply ¢ : Bary” skel’(Z*) — O* to choose vertices in O*.

(because it’s a simplicial approximation, choosing outputs based on
the approximation is consistent with choosing outputs based on f)

|. Introduction
2. Asynchronous Byzantine Systems
3. Synchronous Byzantine Systems

4. Conclusion & Future Work

|. Introduction
2. Asynchronous Byzantine Systems
@ Synchronous Byzantine Systems

4. Conclusion & Future Work

32

|. Introduction
2. Asynchronous Byzantine Systems
@ S)’nChrOnOUS Byzantine S)’Stems quick overview

4. Conclusion & Future Work

32

Protocol Complex

Protocol Complex

Before

Protocol Complex

Before

[Tasks modeled as simplicial complexes]

Protocol Complex

Before

[Tasks modeled as simplicial complexes]

Now

Protocol Complex

Before

[Tasks modeled as simplicial complexes]

Now

[Executions also modeled as simplicial complexes]

Protocol Complex

Before

[Tasks modeled as simplicial complexes]

Now

[E(xecutions also modeled as simplicial complexeﬁ

Global state evolving throughout the rounds

33

Protocol Complex

Before

[Tasks modeled as simplicial complexes]

Now

[E(xecutions also modeled as simplicial complexeﬁ

Global state evolving throughout the rounds

[Protocol Complex]

33

Protocol Complexes

Protocol Complexes

Protocol Complexes

(_Consensus cask] t =

Protocol Complexes
input O/O\O
P Ps

Protocol Complexes
input O/O\O
P Ps

round 1:
P Afails

34

Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34

Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34

Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34

Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34

Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34

Protocol Complexes

EEma

input O/O\O
Ps Ps

P3 P2

P, Ps

round 1:
P Afails

34

Protocol Complexes

EEma

input O/O\O
Ps Ps
3

P

Py

round 1:
P Afails

P, Ps

“ 0—0 —0 0—0
outpu

34

Protocol Complexes

EEma

input O/O\O connected
Ps Py

Ps Ps

P, s

round 1:
P Afails

“ 0—0 —0 0—0
outpu

34

Protocol Complexes

EEma

input O/O\O connected
Py Ps
Ps Py
connected
P, s

round 1:
P Afails

“ 0—0 —0 0—0
outpu

34

Protocol Complexes

(_Consensus cask] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

34

Protocol Complexes

(_Consensus cask] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

34

Protocol Complexes

(_Consensus cask] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34

Protocol Complexes

(_Consensus cask] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34

Protocol Complexes

(_Consensus cask] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34

Protocol Complexes

(_Consensus cask] t =

Py
input O/O\O connected
Py P
P3 P,
? ?
P, P3

round 1:
P Afails

connected

output P2© ©P3 PQ@ ©P3 P2© OP 3 disconnected

34

Protocol Complexes

(_Consensus cask] t =

P
input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

35

Protocol Complexes

(_Consensus cask] t = -

input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

round 2:
no failures

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

35

Protocol Complexes

(_Consensus cask] t = -

input O/O\O connected
Py P
P3 P,
connected
P, P3

round 1:
P Afails

round 2:
no failures

output P2© ©P3 PQ@ ©P3 PQQ OP 3 disconnected

35

Protocol Complexes

(_Consensus cask] t = -

input O/O\O connected
Py P

3

P3 P2

round 1:
P Afails

connected

round 2:

no failures @ @
Py Ps

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35

Protocol Complexes

(_Consensus cask] t = -

input O/O\O connected
Py P

3

P3 P2

round 1:
P Afails

connected

round 2:

no failures @ @
Py Ps

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35

Protocol Complexes

(_Consensus cask] t = -

input O/O\O connected
P2 P3

P3 P2

round 1:
P Afails

connected

PQ P3

round 2:

no failures @ @ % %
P2 P3 P2 P3

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35

Protocol Complexes

(_Consensus cask] t = -

input O/O\O connected
P2 P3

P3 P2

round 1:
P Afails

connected

PQ P3

round 2:

no failures @ @ % %
P2 P3 P2 P3

output PQO ©P3 PQ@ ©P3 P2© OP 3 disconnected

35

Protocol Complexes

[Consensus task j t =1

Py
input Q/CD\O connected
round 1: E connected
P Afails

Py P P3

round 2: @ @ @ @
no failures @ @
P PQ PS

P 3 disconnected
e TO0—0 0—0 0—=0

35

Protocol Complexes

[Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output Q O Q O Q O

35

Protocol Complexes

[Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output Q O Q O Q O

35

Protocol Complexes

[Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output O O Q O Q O

35

Protocol Complexes

[Consensus task j t =1 Py

input G/CD\O connected
round. 1: E connected
P Afails

Ps P Ps

round 2; < ES @ @ @ disconnected
no failures @ @
P3 P2 P3

P 3 disconnected
output O O Q O Q O

35

Protocol Complexes

[Consensus task j t=1

Py
input Q/CD\O connected
P2 PS
P3 P2
round 1: E connected
P Afails
23 s
Py

PS P2 P3

round 2: < ES @ @ @ disconnected
no failures @ @ % %
Py P3 Py Ps

output PQO ©P3 PQQ ©P3 PQQ {)P 3 disconnected

35

Protocol Complexes

[Consensus task j t=1

Py
input Q/CD\O connected
P2 PS
P3 P2
round 1: E connected
P Afails
23 s
Py

PS P2 P3

round 2: < ES @ @ @ disconnected
no failures @ @ % %
Py P3 Py Ps

output PQO ©P3 PQQ OPB PQQ {)P 3 disconnected

35

Protocol Complexes

[Consensus task j t=1

Py
input Q/CD\O connected
P2 PS
P3 P2
round 1: E connected
P Afails
23 s
Py

PS P2 P3

round 2: < ES @ @ @ disconnected
no failures @ @ % %
Py P3 Py Ps

output PQO ©P3 PZC} {)P3 PQQ {)P 3 disconnected

35

With Crash Failures...

Herlihy & Rajsbaum 2000

With Crash Failures...

Herlihy & Rajsbaum 2000

Ko=1"

VAN

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

Ko=1"

VAN

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

ICO =7 /Cl — RC(/CQ, k)

A O

(k — 1)-connected

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

ICO =1 ICl — RC(IC()?]/G\SI

A O

(k — 1)-connected

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko = I* K1 = Rc(lCo,léﬂ Ko = Ro(K1, k)

A O O

(k — 1)-connected (k — 1)-connected

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = RC(IC07]/€\5| Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

Theorem:

While the protocol complex is (k — 1)-connected,
we cannot solve the k-set agreement task

36

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

37

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = Rc(lcoaléjl Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

Theorem:

We cannot solve k-set agreement with ¢ failures
in |t/k] or less rounds.

37

With Crash Failures...

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

Ko=1" K1 = RC(IC07]/€\5| Ko =R:(Kq, k) Ks =Rc(Ka, k)

A O O ©

(k — 1)-connected (k — 1)-connected (k — 1)-connected

Theorem:
We cannot solve k-set agreement with ¢ failures

in |t/k| or less rounds. [We have a |¢/k| + 1 PrOtOCOO

37

Byzantine Equivocation

Is equivocation a problem
in synchronous systems?

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of

Ex.: 4 processes, 1 failure

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of

you know this
Ex.: 4 processes)| 1 failure i

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

L] L] L] L]

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

B AN

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

[22]{Z2f{72]_]

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner nodes:)

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdes:)

(validated) | 1L I:I

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdes:)

(validated) an I:I
(Leaf nodes:) I:”:”:”:I

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdes:)

(validated) I:I
Leaf nodes:)
(= nEnc?: validated) DI:”:”:I

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner ngdesz)

(validated) I:I
Leaf nodes:)
(= nEn;f validated) DI:”:”:I

(Last-round equivocation is problematic..)

38

Byzantine Equivocation

Is equivocation a problem
in synchronous systems? sort of Py’s tree

Ex.: 4 processes, 1 failure

(Inner n9des:)

(validated) I:I
Leaf nodes:)
(= nEn;f validated) DI:”:”:I

(Last-round equivocation is problematic..]
... if Byzantine processes
(do not “reveal” themselves

38

We define a new round operator

We define a new round operator

KCo=1"

VAN

39

We define a new round operator

I* 1]C(), Kl)

connected connected

39

We define a new round operator

I* 1]C(), Kl)

connected connected

't/k| rounds

39

We define a new round operator

=7 K

A Q’ @’

connected connected

't/k| rounds if £ mod k £ 0

39

We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

39

We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

[t/k| rounds

39

We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

k-set agreement protocol

[t/k| rounds

39

We define a new round operator

Ko=7I" Ki=RcKo, k) Ko =Re(K1, k) K3 =Re(K2)

(k — 1)-connected (k — 1)-connected (k — 1)-connected

't/k| rounds if £ mod k £ 0

k-set agreement protocol
Generalize the consensus protocol

[t/k| rounds

39

The Equivocation Operator

The Equivocation Operator

|t/k] rounds,
k failures/round

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(PQvSC)

(Plvsb)

(POan)

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

Let’s focus on
.- these two...

(Plvsb)

(POan)

40

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

Let’s focus on
.- these two...

’

(Po,Sd) \0.0 ?j

40

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

Let’s focus on
.- these two...

’

(Po,Sd) \0.0 ?j

40

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(Po,Sd) \0.0 ?j

L4

4]

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(Po,Sd) \0.0 ?j

L4

4]

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(Po,Sd) \0.0 ?j

L4

4]

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(POvSa)

(POan)

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

4]

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

4]

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

42

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

0]0)0)

QOO0 000
000 000

Y

0]0)0)

-

42

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

43

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

0]0)0)

QOO0 000
000 000

Y

0]0)0)

-

43

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

43

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

P Py —\ /—

43

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

©])@) 000
000 000
P 1 P, 2 /—
0@0—000 _—
[0]0]0)

43

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

©]]@) 0eo
000 000
P Py —\ /—
0@0—000 QL
O0O0—0O00

43

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

P P —\ /—

O
O
[
S
O
O
O
O
O

(,
|
|
|

O
O
C|>
O
O
O

{,
(

43

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

00 0o
000 000
P 1 P, 2 f
0@0—000 QL
CeO0—0O00
P 2 P 1

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

O0O0. 0]"]0,
000 000
P; P, —d\ /
000—000 QOO
(Shellable)
O0O0—0O00
P 2 P 1

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

O0O0. QOO0
000 000
P Py —d\ /
0®0—000 —
(Shellable)

((#procs - 2)-connected)

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

44

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

44

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

44

The Equivocation Operator

|t/k] rounds,

. (k — 1)-connected
k failures/round

44

The Equivocation Operator

|t/k] rounds,

. (k — 1)-connected
k failures/round

44

The Equivocation Operator

|t/k] rounds,

, .o o (k — 1)-connected
k failures/round

The Equivocation Operator

|t/k] rounds,

. (k — 1)-connected
k failures/round

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

45

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

45

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

(k — 1)-connected

(k — 1)-connected

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

RN\

‘000

(k — 1)-connected

g2t~ (k — 1)-connected
©oo e

N

[Extend throughout structure]

The Equivocation Operator

|t/k] rounds,
k failures/round

(k — 1)-connected

BN N\

‘000

(k — 1)-connected

7= (k — 1)-connected
©00

Extend throughout structure)
Subsequent applications of the Nerve Lemma)

45

Strategy, Again

We match the bound with an algorithm

(k — 1)-connected (k — 1)-connected (k — 1)-connected

|t/k| rounds if £ mod k £ 0

't/k| rounds

46

Strategy, Again

We match the bound with an algorithm

(k — 1)-connected (k — 1)-connected (% — 1)-connected

|t/k| rounds if £ mod k £ 0

k-set agreement protocol

't/k| rounds

46

Strategy, Again

We match the bound with an algorithm

(k — 1)-connected (k — 1)-connected (k — 1)-connected

|t/k| rounds if £ mod k £ 0

k-set agreement protocol
Generalize the consensus protocol

't/k| rounds

46

|. Introduction
2. Asynchronous Byzantine Systems
3. Synchronous Byzantine Systems

4. Conclusion & Future Work

|. Introduction
2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

Conclusion & Future Work

47

Conclusion

48

Conclusion

Conclusion

® Asynchronous Byzantine computability by reduction

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model

® Reliable Broadcast

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model
® Reliable Broadcast

2. A“layer of interpretation” that empowers the model

Conclusion

® Asynchronous Byzantine computability by reduction
. Algorithmic primitives incorporated into the model
® Reliable Broadcast
2. A“layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model
® Reliable Broadcast
2. A“layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

® Synchronous Byzantine computability by shellability

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model
® Reliable Broadcast
2. A“layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

® Synchronous Byzantine computability by shellability

|. Different layer of interpretation

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model
® Reliable Broadcast
2. A“layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

® Synchronous Byzantine computability by shellability

|. Different layer of interpretation

® Round-by-round interpretation of messages

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model
® Reliable Broadcast
2. A“layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

® Synchronous Byzantine computability by shellability

|. Different layer of interpretation
® Round-by-round interpretation of messages

® We cannot validate messages from the last round

Conclusion

® Asynchronous Byzantine computability by reduction

. Algorithmic primitives incorporated into the model
® Reliable Broadcast
2. A“layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

® Synchronous Byzantine computability by shellability

|. Different layer of interpretation
® Round-by-round interpretation of messages
® We cannot validate messages from the last round

2. Topological upper bound, algorithmic lower bound

Future VWork

50

Future Work (i.e. Research Questions)

Future Work (i.e. Research Questions)

® Randomized Protocols

® Many impossible problems (in a deterministic setting)
now become possible

Future Work (i.e. Research Questions)

® Randomized Protocols

® Many impossible problems (in a deterministic setting)
now become possible

® Complexity
® Particularly in asynchronous systems

® Proofs are not constructive

Future Work (i.e. Research Questions)

® Randomized Protocols

® Many impossible problems (in a deterministic setting)
now become possible

® Complexity
® Particularly in asynchronous systems

® Proofs are not constructive

® Failure Detectors

® Allow us to detect the crash of peer processes

® Again, many impossible problems now become possible

References

Published:

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391-400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1-19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC 14, pages 704—713, New York, NY, USA, 2014. ACM.

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

References

Published:

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391-400, New York, NY, USA, 2013. ACM.

@Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1-19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC 14, pages 704—713, New York, NY, USA, 2014. ACM.

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

References

Published:

@Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391-400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1-19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC 14, pages 704—713, New York, NY, USA, 2014. ACM.

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

References

Published:

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391-400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1-19, 2015.

@Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC 14, pages 704—713, New York, NY, USA, 2014. ACM.

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

52

References

Published:

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391-400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1-19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC 14, pages 704—713, New York, NY, USA, 2014. ACM.

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

Thank You!

hmendes(@cs.rochester.edu

53

mailto:hmendes@cs.brown.edu?subject=

