

Byzantine Computability and Combinatorial Topology

Hammurabi Mendes University of Rochester

Applied Algebraic Topology Research Network November 10, 2015

joint work with Maurice Herlihy, ChristineTasson, done at Brown University

I. Introduction

2. Asynchronous Byzantine Systems

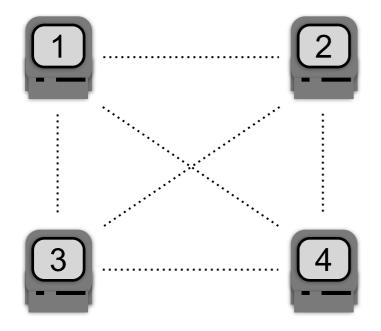
- 3. Synchronous Byzantine Systems
- 4. Conclusion & Future Work

2. Asynchronous Byzantine Systems

- 3. Synchronous Byzantine Systems
- 4. Conclusion & Future Work

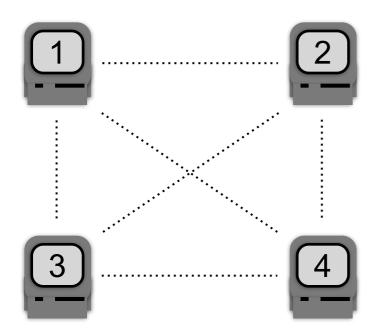
Tasks:

Tasks:



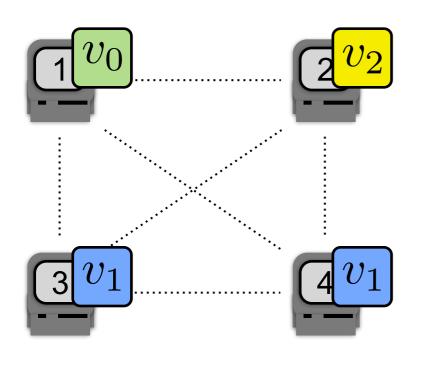
Tasks:

Processes input values from a set $\{v_0 v_1 v_2 v_3\}$



Tasks:

Processes input values from a set $\{v_0 v_1 v_2 v_3\}$

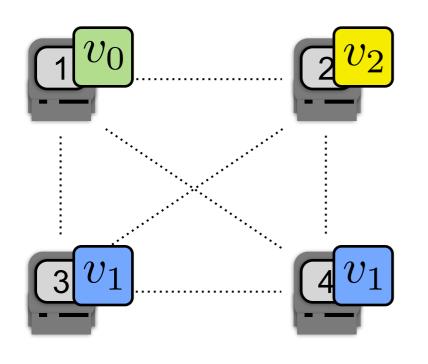


input

Tasks:

Processes input values from a set $\{v_0 v_1 v_2 v_3\}$

Processes output values a single proposed value

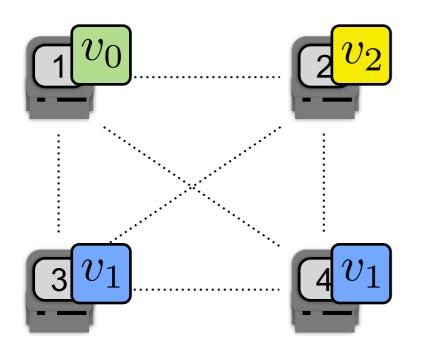


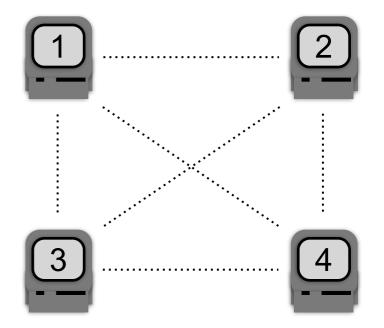
input

Tasks:

Processes input values from a set $\{v_0 v_1 v_2 v_3\}$

Processes output values a single proposed value



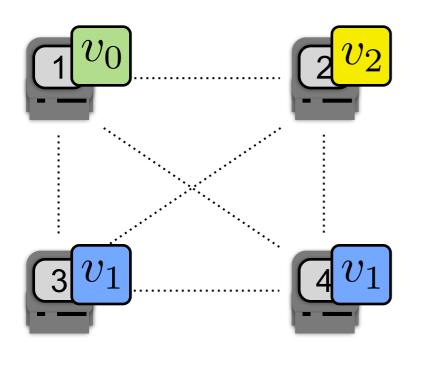


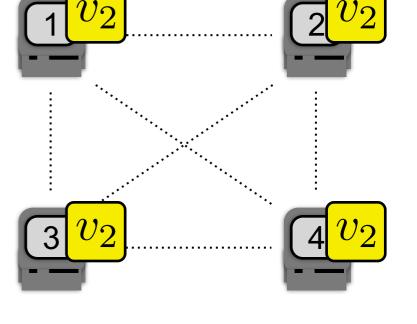
input

Tasks:

Processes input values from a set $\{ v_0 v_1 v_2 v_3 \}$

Processes output values a single proposed value





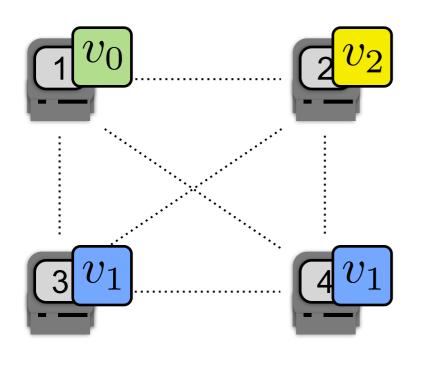
input

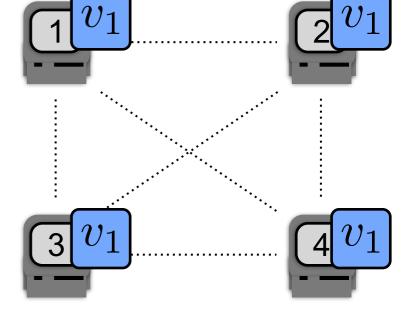
output

Tasks:

Processes input values from a set $\{ v_0 v_1 v_2 v_3 \}$

Processes output values a single proposed value





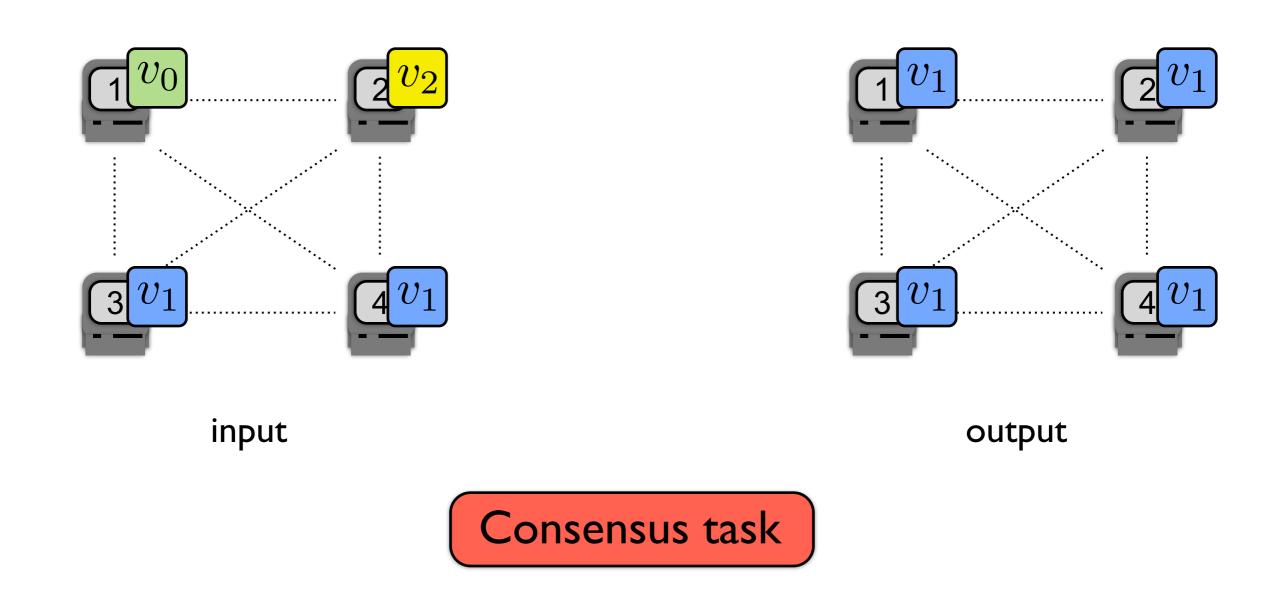
input

output

Tasks:

Processes input values from a set $\{ v_0 v_1 v_2 v_3 \}$

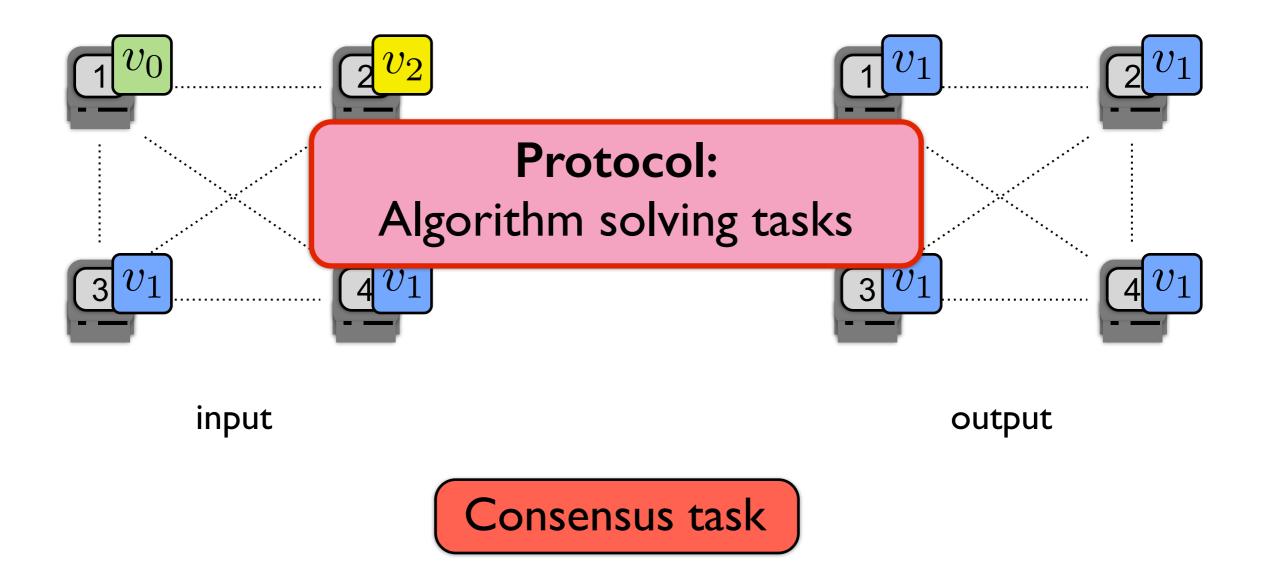
Processes output values a single proposed value



Tasks:

Processes input values from a set $\{ v_0 v_1 v_2 v_3 \}$

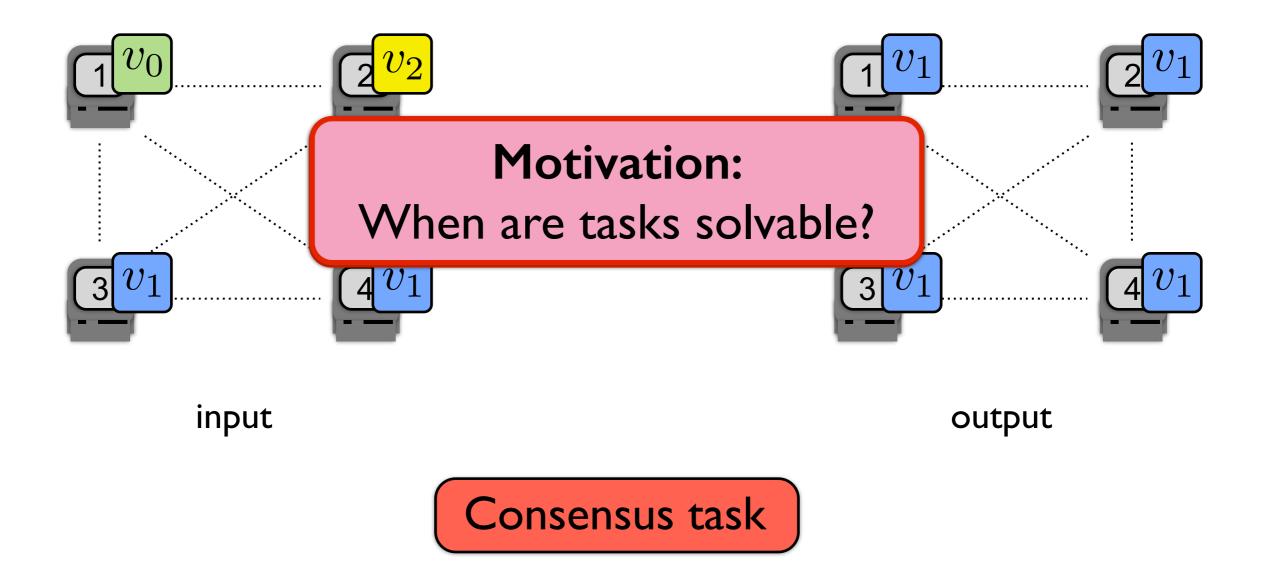
Processes output values a single proposed value



Tasks:

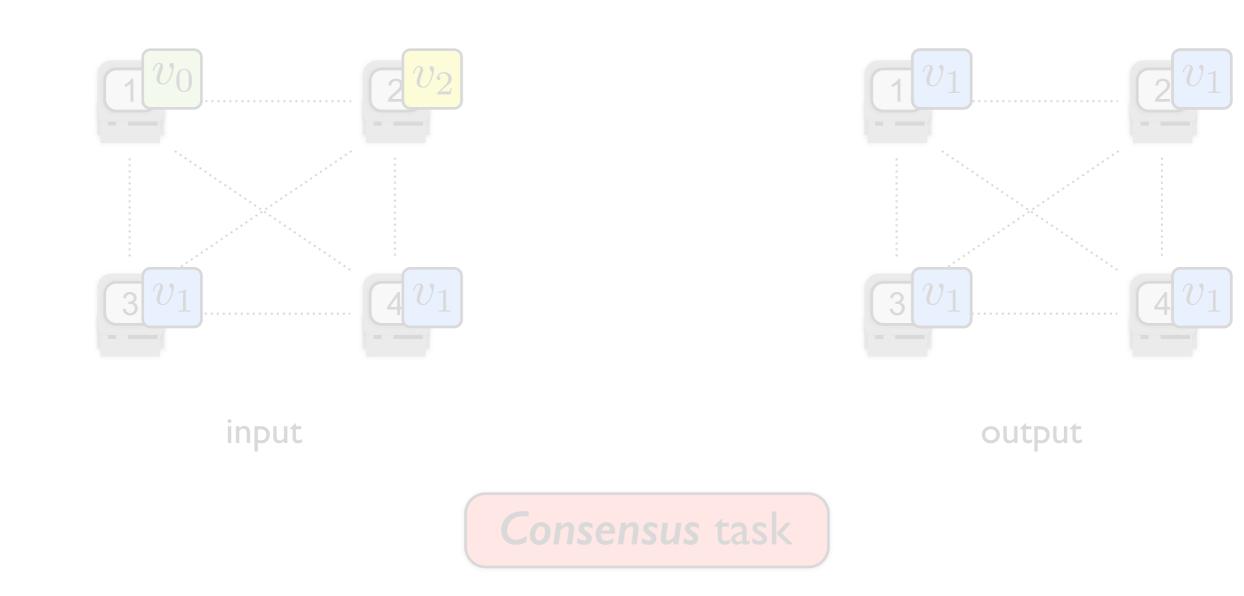
Processes input values from a set $\{ v_0 v_1 v_2 v_3 \}$

Processes output values a single proposed value



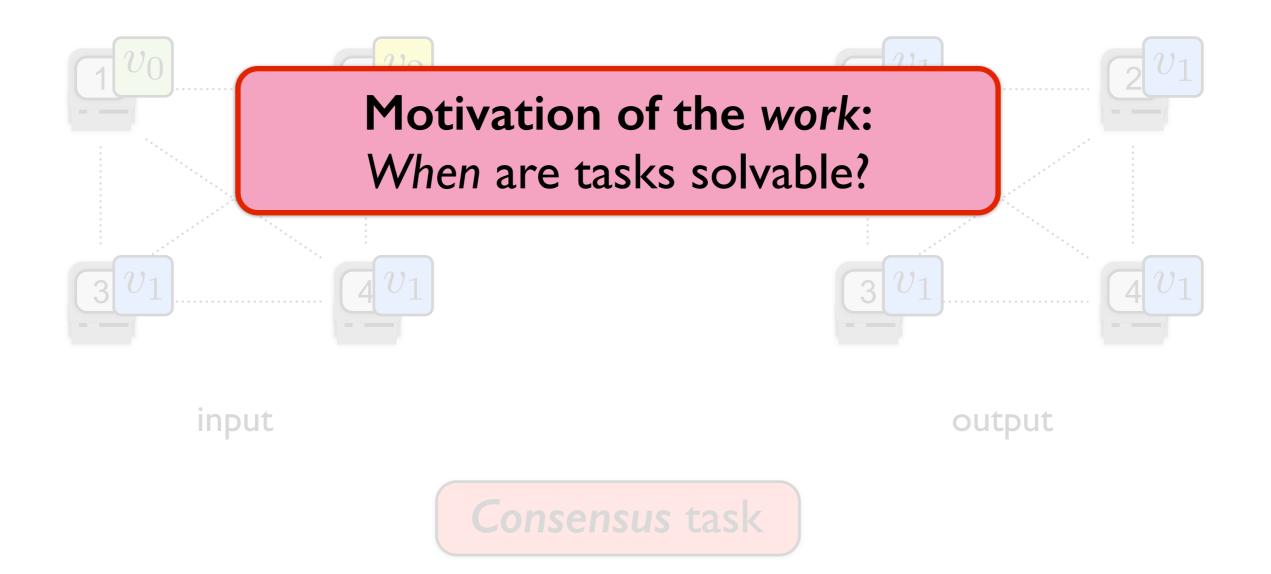
Tasks:

Processes input values from a set $\{v_0 v_1 v_2 v_3\}$ Processes output values a single proposed value



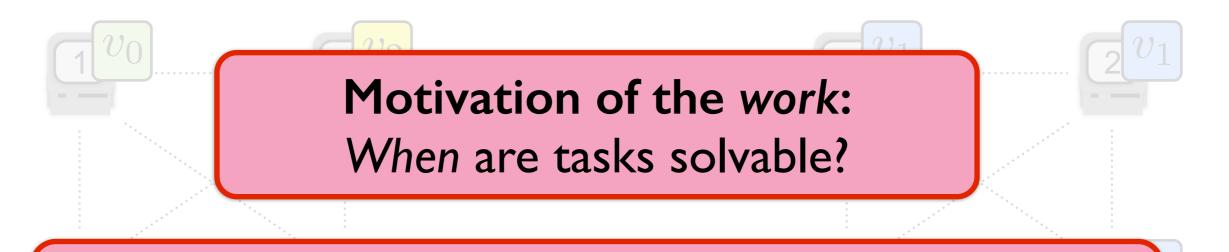
Tasks:

- Processes input values from a set $\{ v_0 v_1 v_2 v_3 \}$
- Processes output values a single proposed value



Tasks:

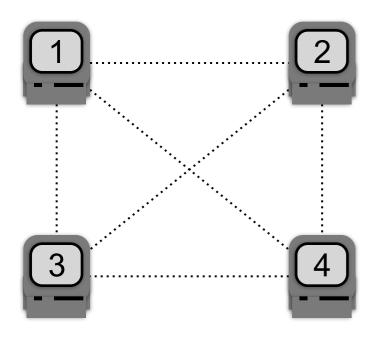
- Processes input values from a set $\{ v_0 v_1 v_2 v_3 \}$
- Processes output values a single proposed value



Motivation of the talk:

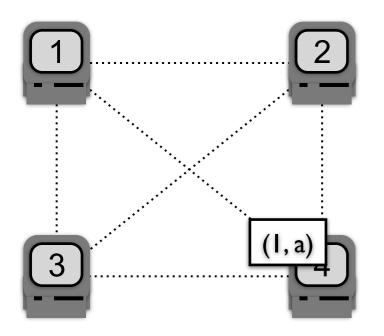
Overview the research area for the AATRN Create collaboration bridges

Tasks:



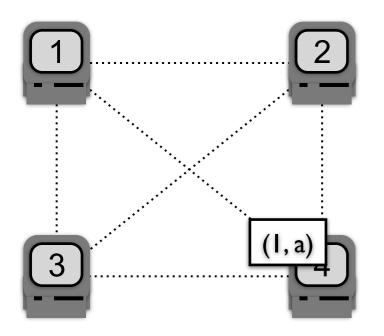
- Message-passing
 - Complete communication graph
 - Senders reliably identified
- FIFO delivery for each pair

Tasks:



- Message-passing
 - Complete communication graph
 - Senders reliably identified
- FIFO delivery for each pair

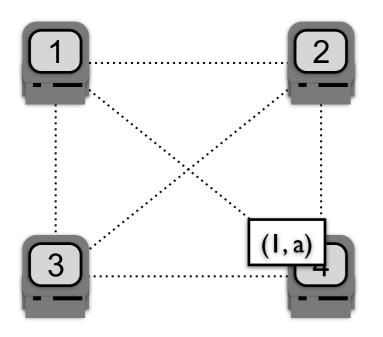
Tasks:



- Message-passing
 - Complete communication graph
 - Senders reliably identified
- FIFO delivery for each pair

Trivial?

Tasks:



- Message-passing
 - Complete communication graph
 - Senders reliably identified
- FIFO delivery for each pair

Failures and (a)synchrony are the difficulties

Processes subject to failures

Processes subject to failures

halting failures

Processes subject to failures

halting failures

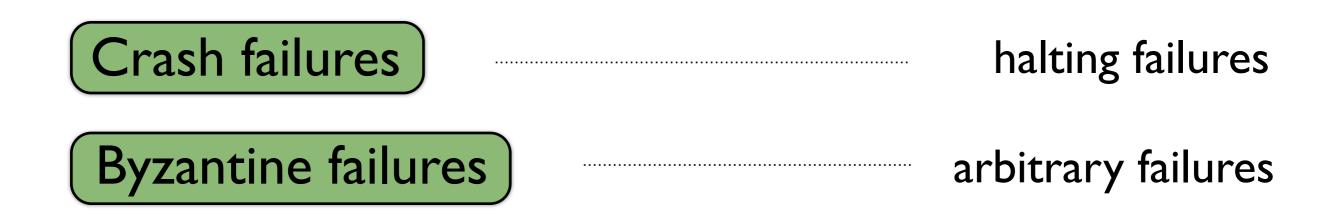
Byzantine failures

arbitrary failures

Processes subject to failures

Messages subject to delivery semantics

Processes subject to failures

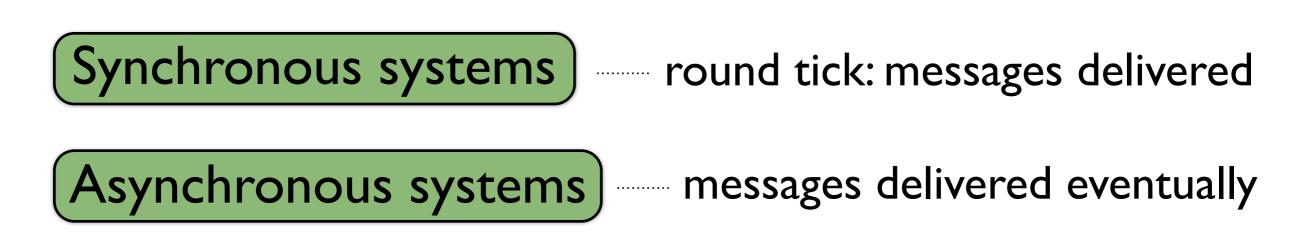


Messages subject to delivery semantics

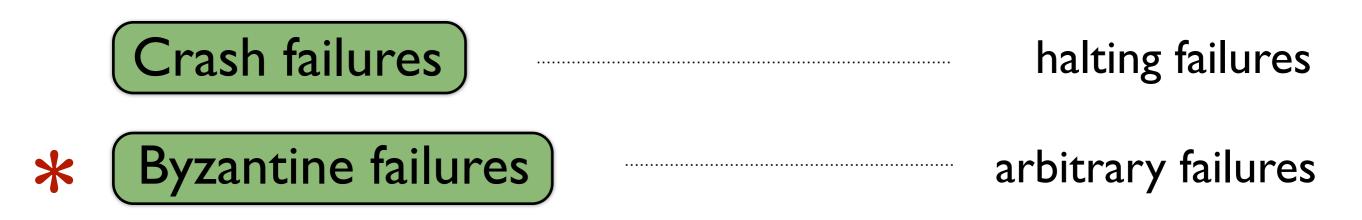
Synchronous systems | ----- round tick: messages delivered

Processes subject to failures

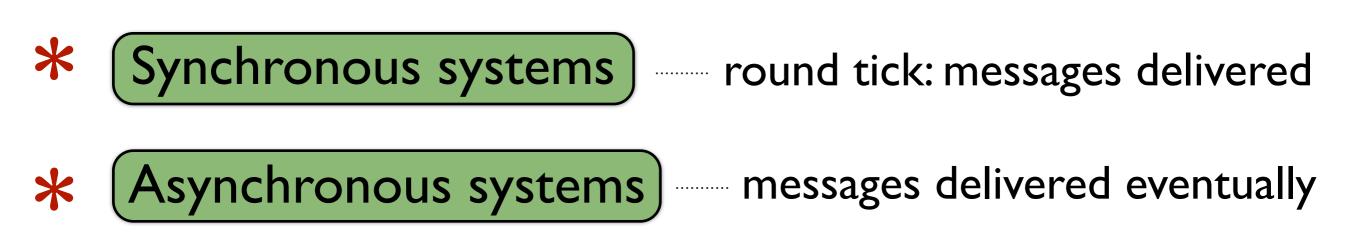
Messages subject to delivery semantics



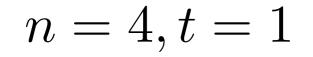
Processes subject to failures



Messages subject to delivery semantics



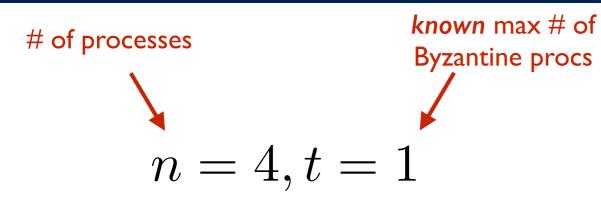
Asynchronous Systems, Byzantine Failures



of processes

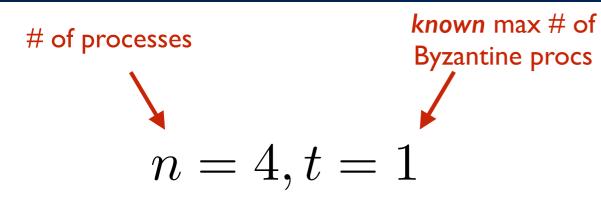
$$n = 4, t = 1$$

Asynchronous Systems, Byzantine Failures

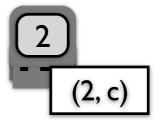


Asynchronous Systems, Byzantine Failures

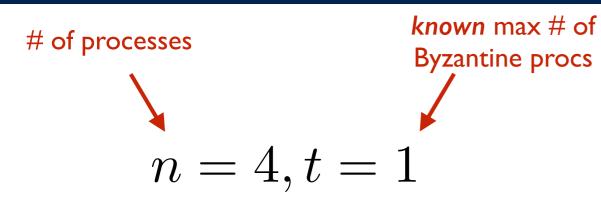
1



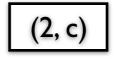
Asynchronous Systems, Byzantine Failures



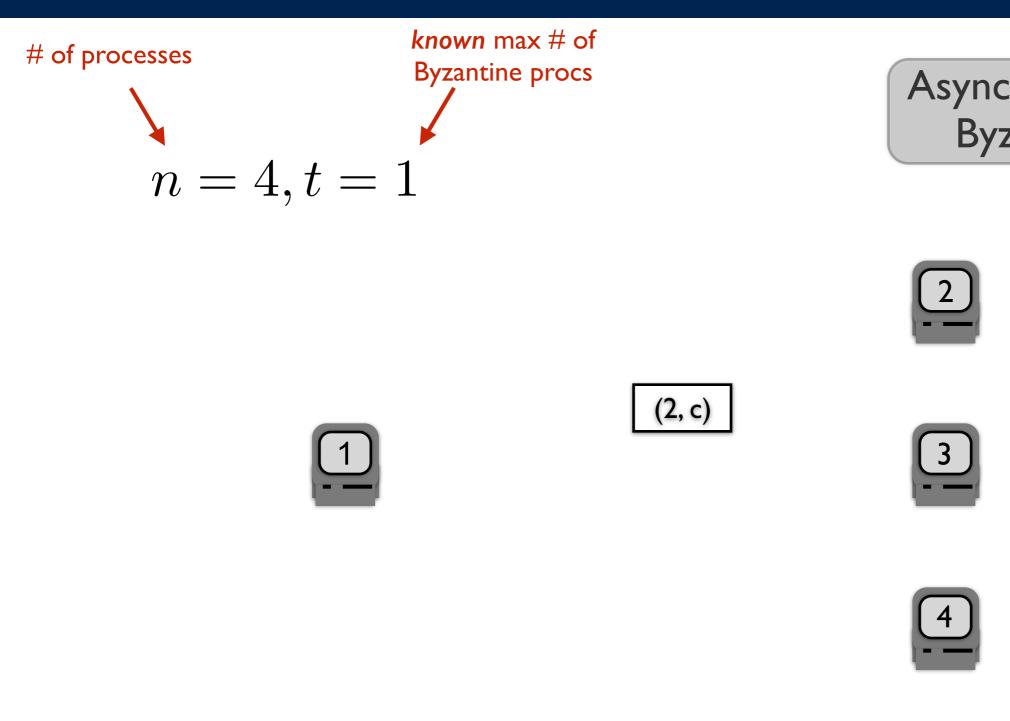
1



Asynchronous Systems, Byzantine Failures



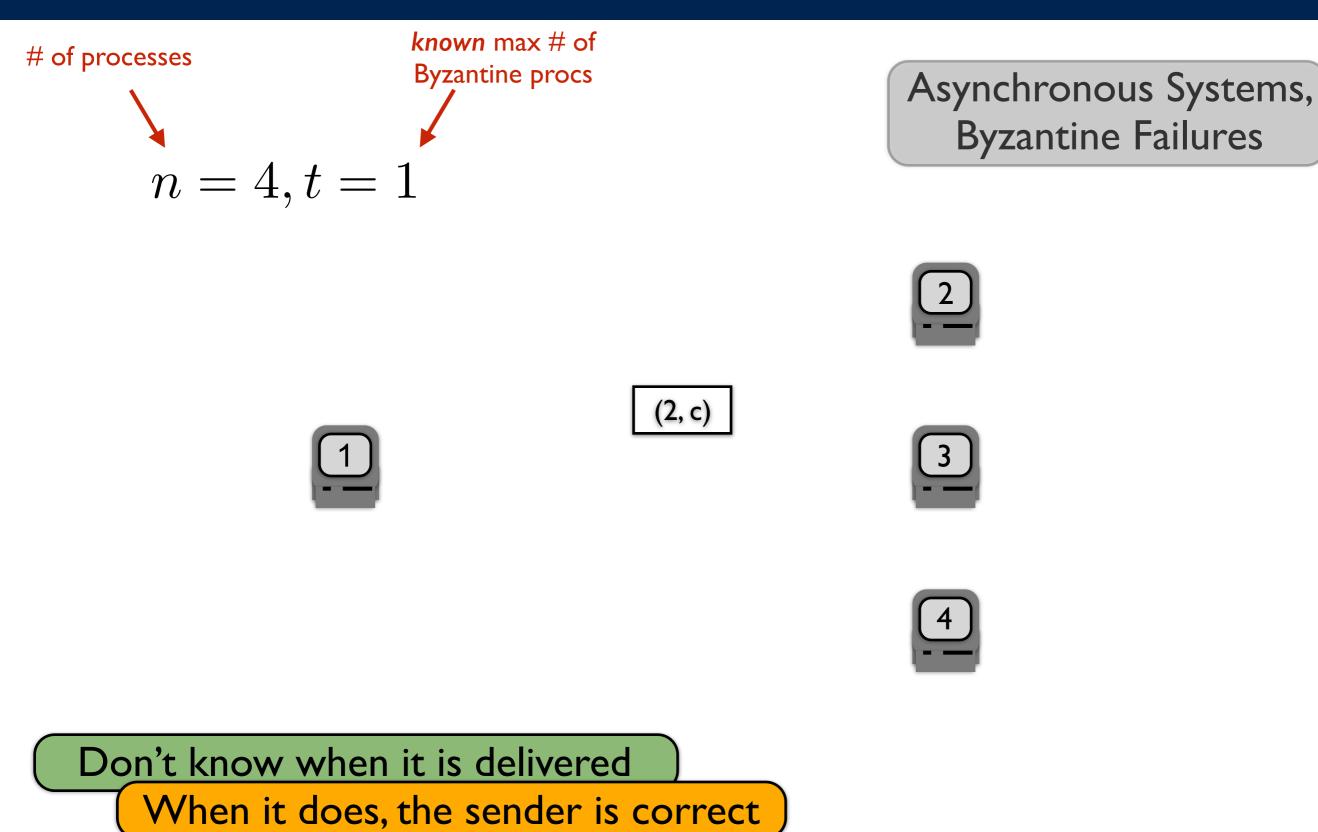
3



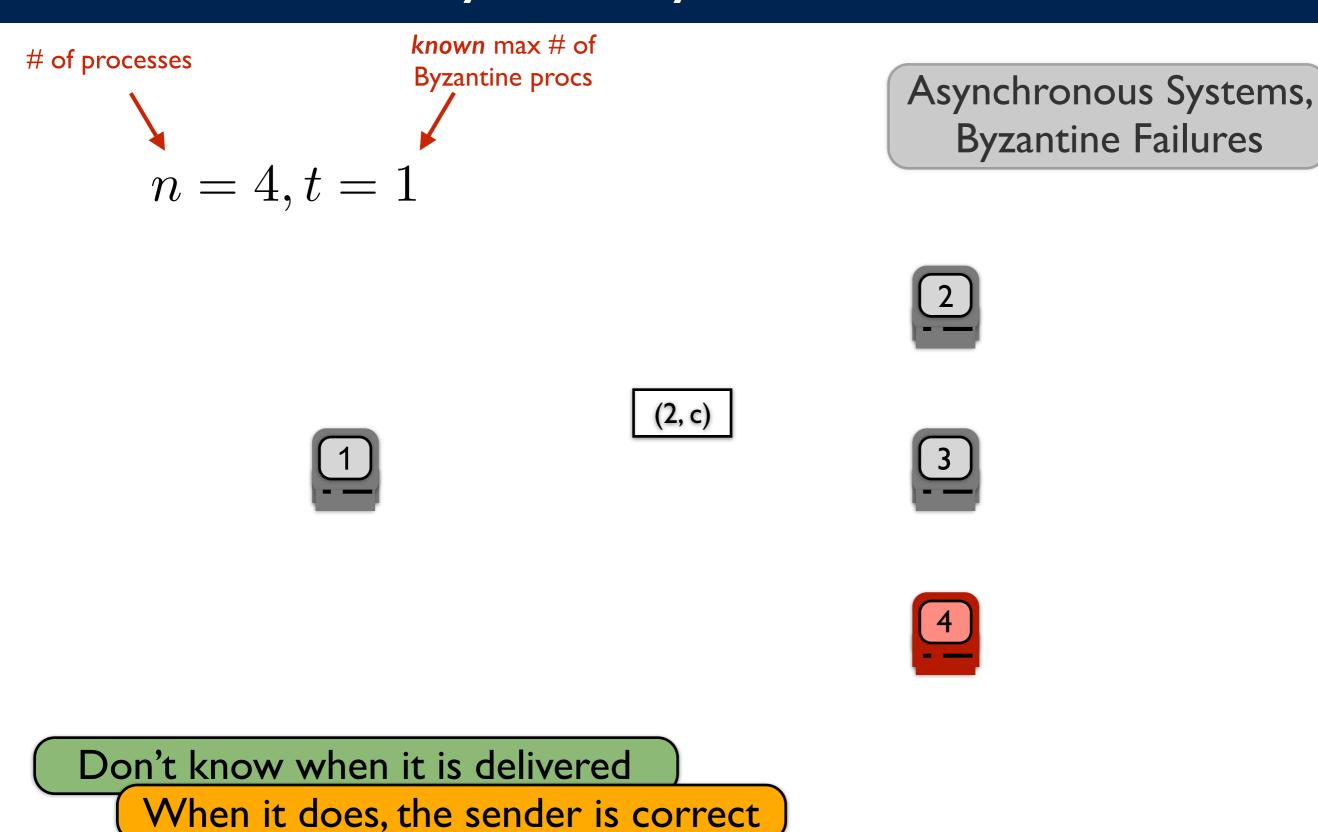
Don't know when it is delivered

Asynchronous Systems, Byzantine Failures

Asynchrony + Failures

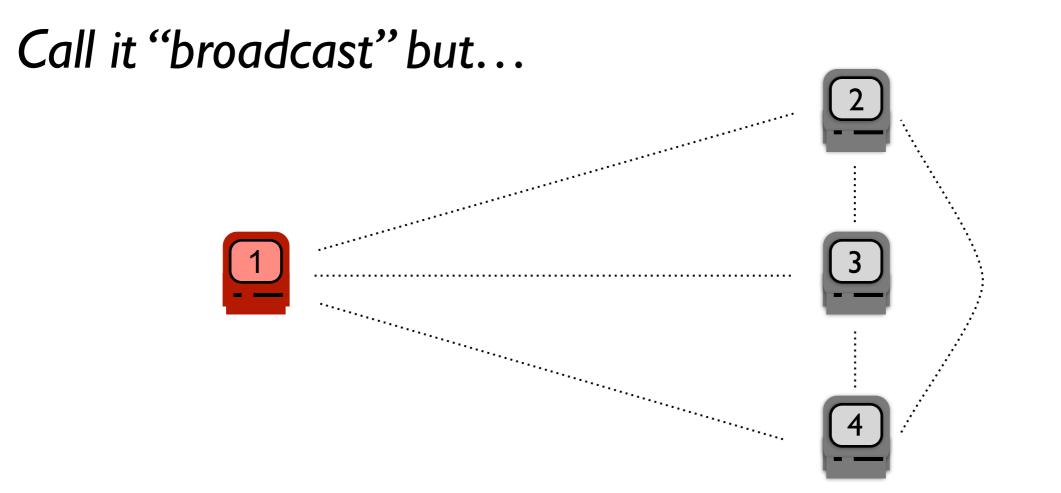


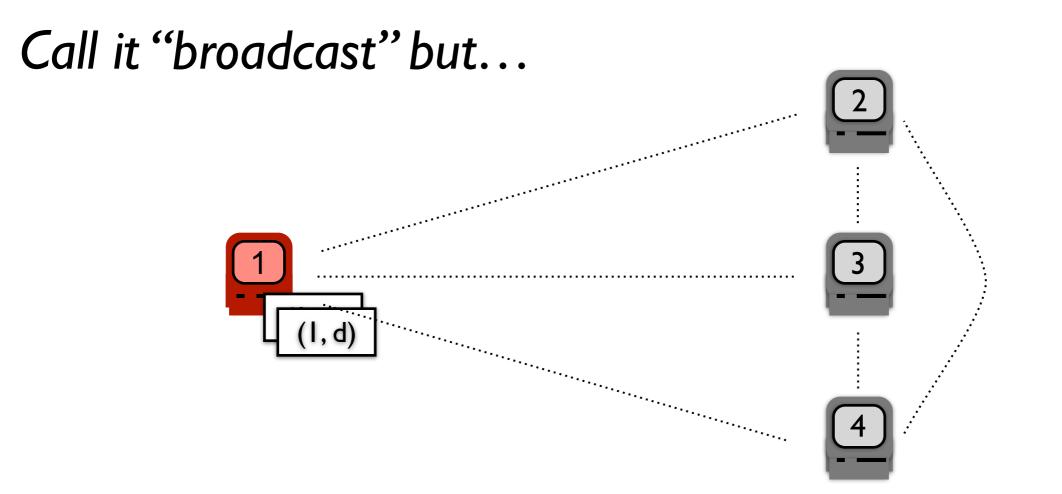
Asynchrony + Failures

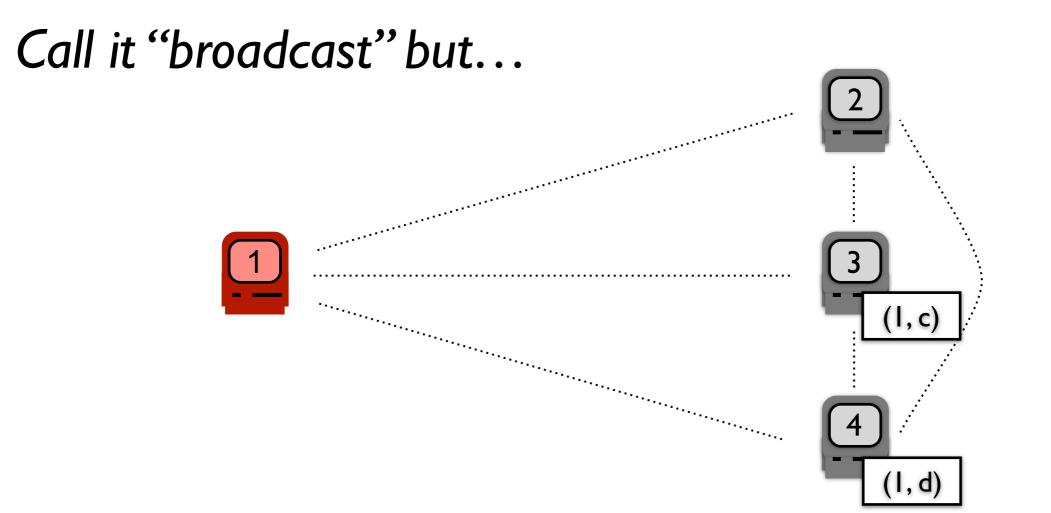


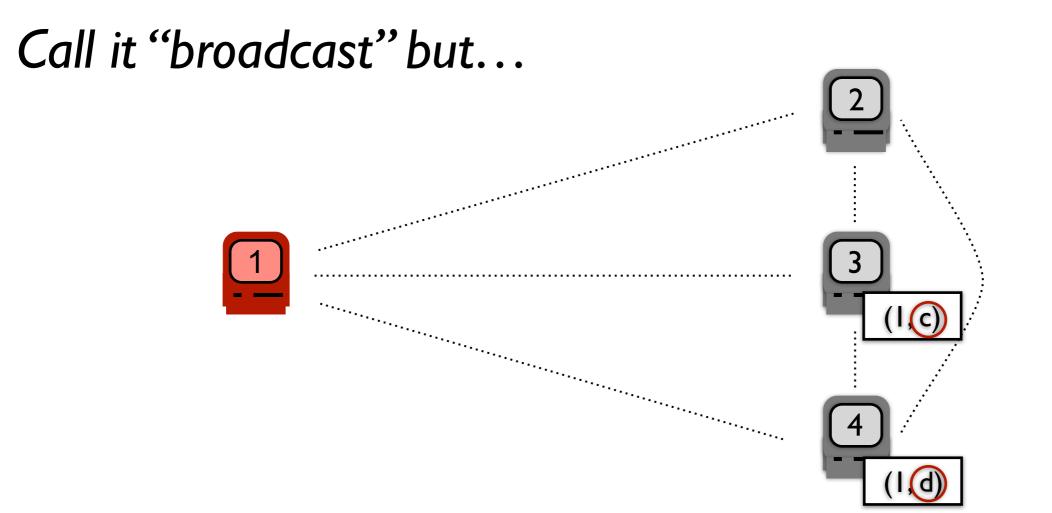
Reliable Broadcast

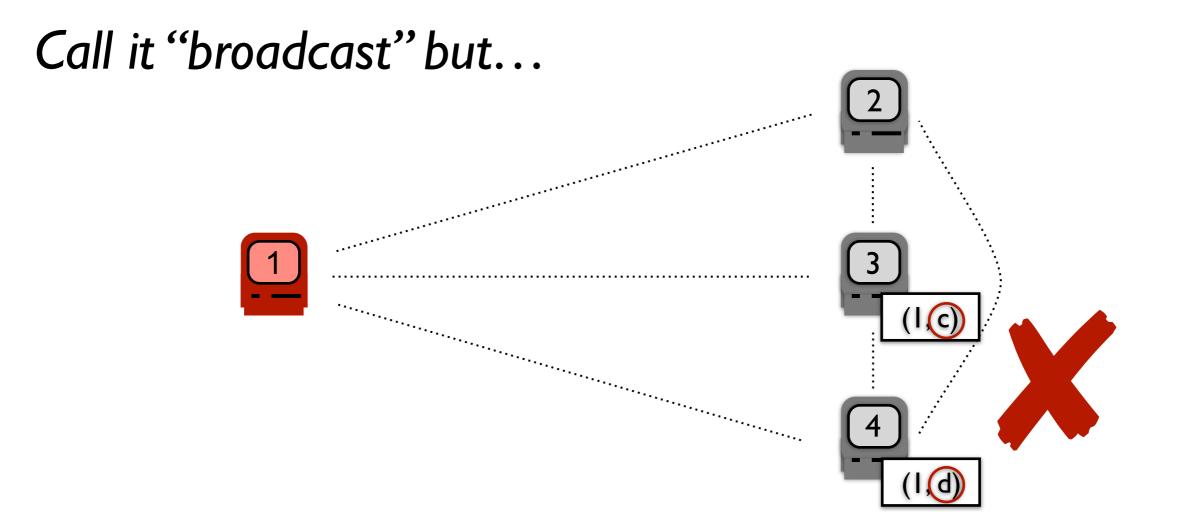
Call it "broadcast" but...

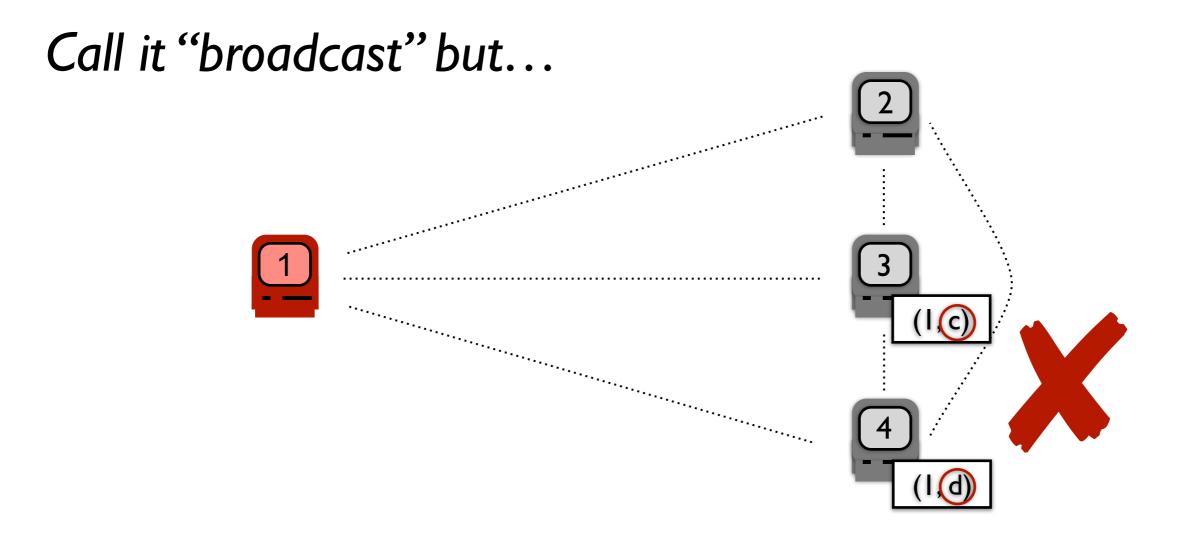




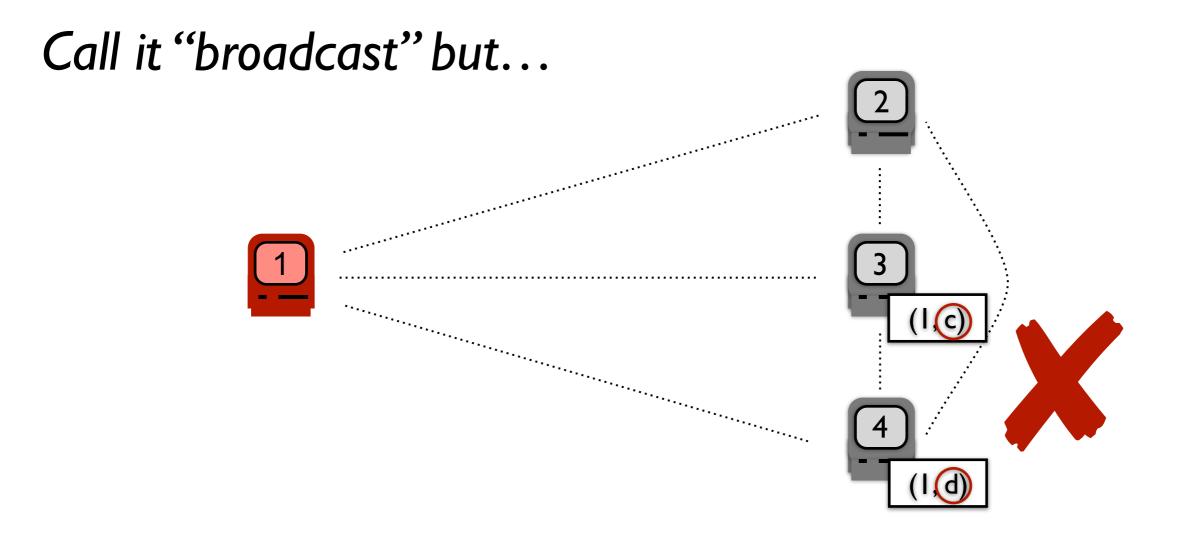








Using a primitive called Reliable Broadcast



Using a primitive called Reliable Broadcast

Message contents are consistent

Protocol = distributed algorithm

$$\begin{split} s \leftarrow I_i \\ \text{for } r: 1 \to R \text{ do} \\ \text{Send } s \text{ via reliable broadcast} \\ \text{while less than } (n+1) - t \text{ messages do} \\ \text{Receive an } r \text{-round message } M \\ s \leftarrow s \cup \{M\} \\ \text{return } \delta(s) \end{split}$$

Protocol = distributed algorithm

initial state: input

 $\begin{array}{l} s \leftarrow I_i \\ \textbf{for } r: 1 \rightarrow R \ \textbf{do} \\ \text{Send } s \ \text{via reliable broadcast} \\ \textbf{while less than } (n+1) - t \ \text{messages } \textbf{do} \\ \text{Receive an } r \text{-round message } M \\ s \leftarrow s \cup \{M\} \\ \textbf{return } \delta(s) \end{array}$

Protocol = distributed algorithm

 $\begin{array}{l} s \leftarrow I_i \\ \textbf{for} \ r: 1 \rightarrow R \textbf{do} \\ \textbf{Send} \ s \ \text{via reliable broadcast} \\ \textbf{while less than} \ (n+1) - t \ \text{messages } \textbf{do} \\ \textbf{Receive an } r \text{-round message } M \\ s \leftarrow s \cup \{M\} \\ \textbf{return } \delta(s) \end{array}$

Protocol = distributed algorithm

initial state: input

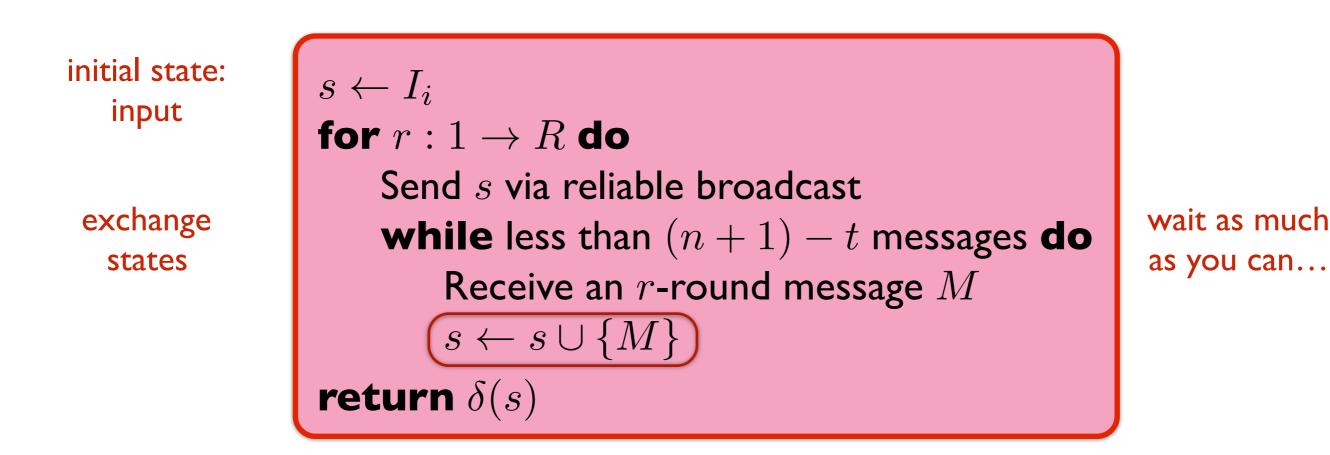
$$\begin{split} s \leftarrow I_i \\ \text{for } r: 1 \rightarrow R \text{ do} \\ \text{Send } s \text{ via reliable broadcast} \\ \text{while less than } (n+1) - t \text{ messages do} \\ \text{Receive an } r\text{-round message } M \\ s \leftarrow s \cup \{M\} \\ \text{return } \delta(s) \end{split}$$

Protocol = distributed algorithm

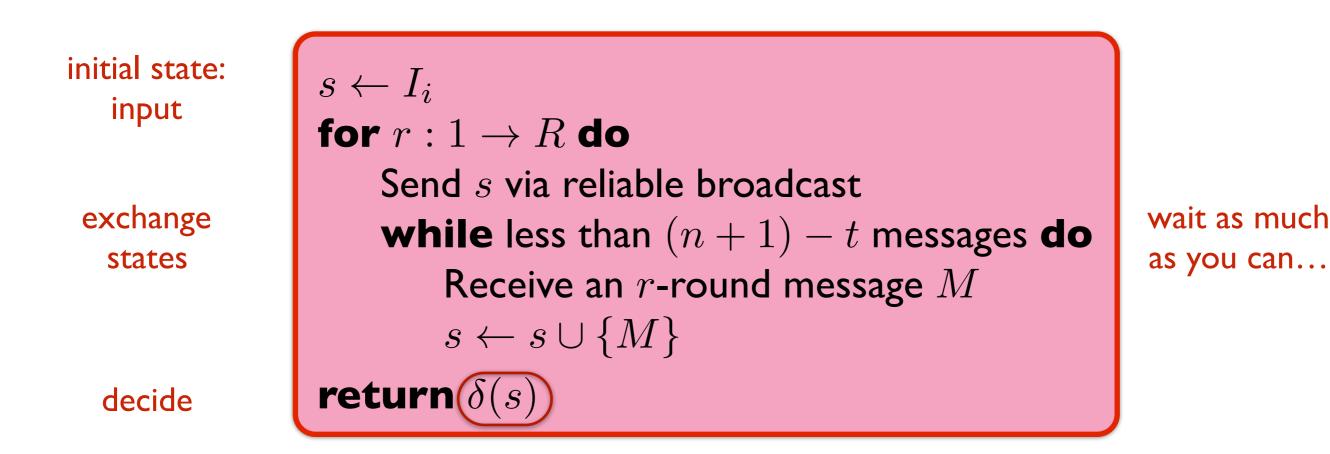
$$\begin{split} s \leftarrow I_i \\ \text{for } r: 1 \rightarrow R \text{ do} \\ \text{Send } s \text{ via reliable broadcast} \\ \text{while less than } (n+1) - t \text{ messages do} \\ \text{Receive an } r\text{-round message } M \\ s \leftarrow s \cup \{M\} \\ \text{return } \delta(s) \end{split}$$

wait as much as you can...

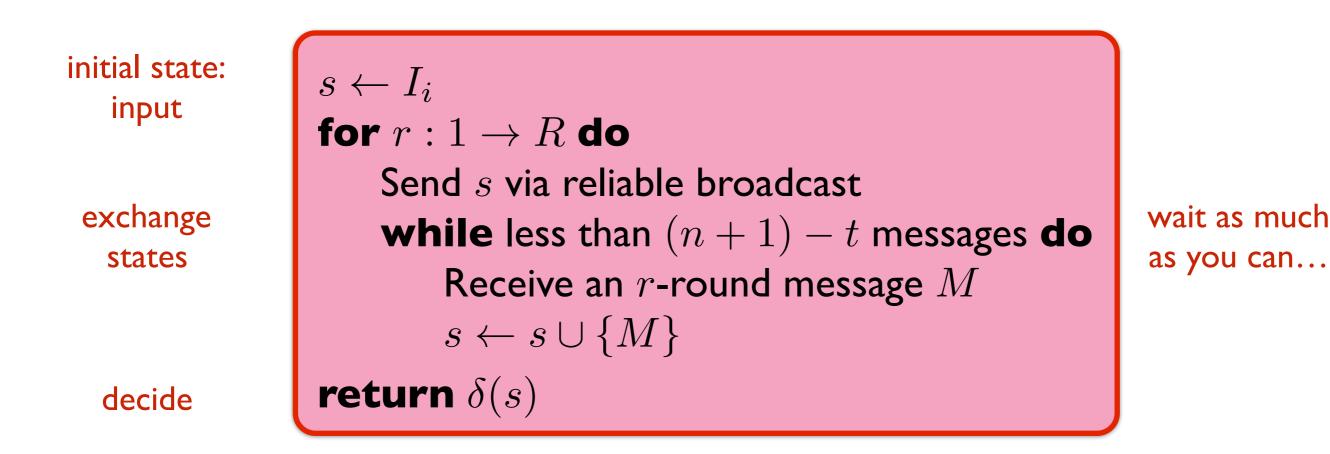
Protocol = distributed algorithm



Protocol = distributed algorithm



Protocol = distributed algorithm



Modeling Tasks

Tasks and Simplicial Complexes

Tasks modeled as simplicial complexes

Tasks and Simplicial Complexes

Tasks modeled as simplicial complexes

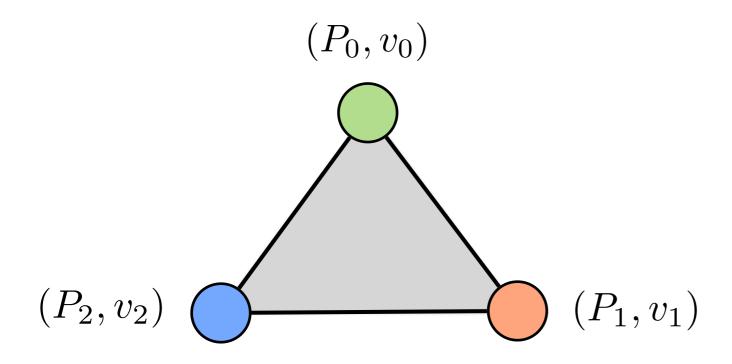
Solvability in terms of topological properties

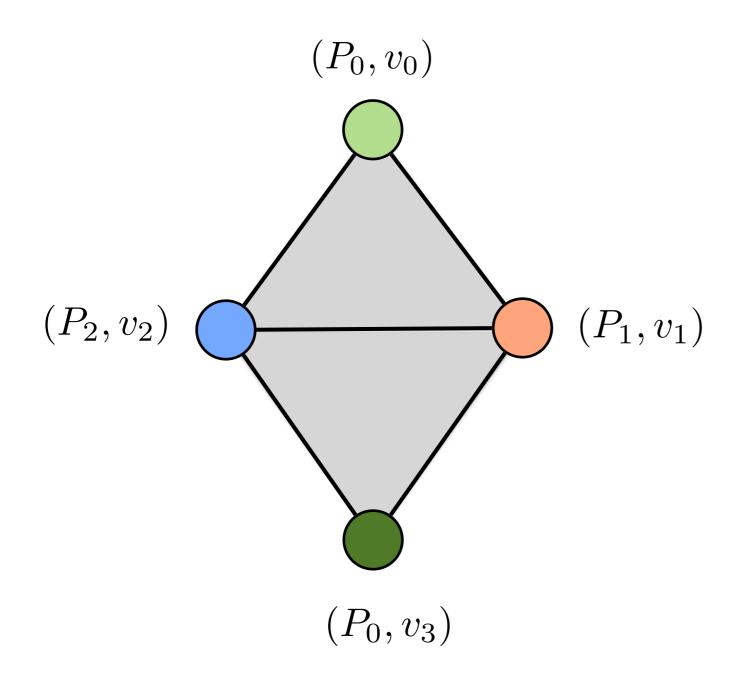
Tasks and Simplicial Complexes

Tasks modeled as simplicial complexes

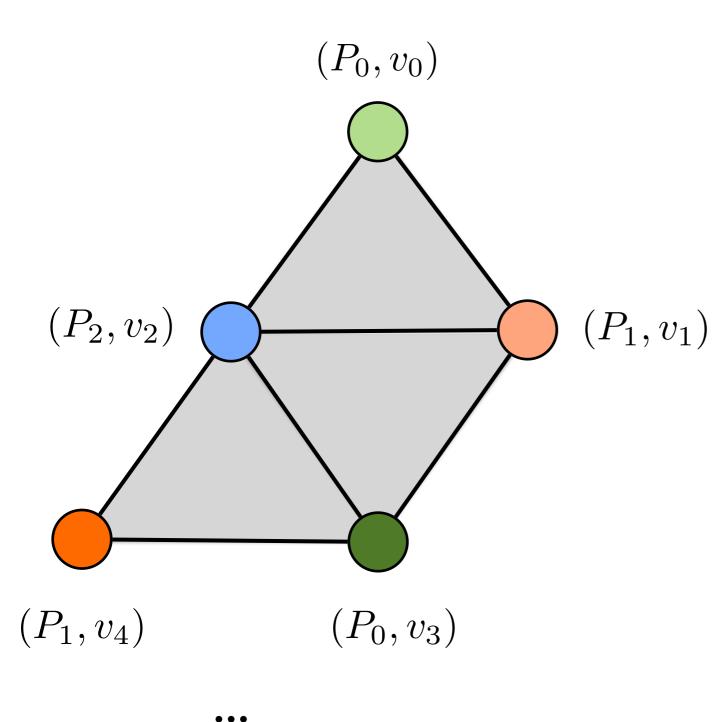
Solvability in terms of topological properties

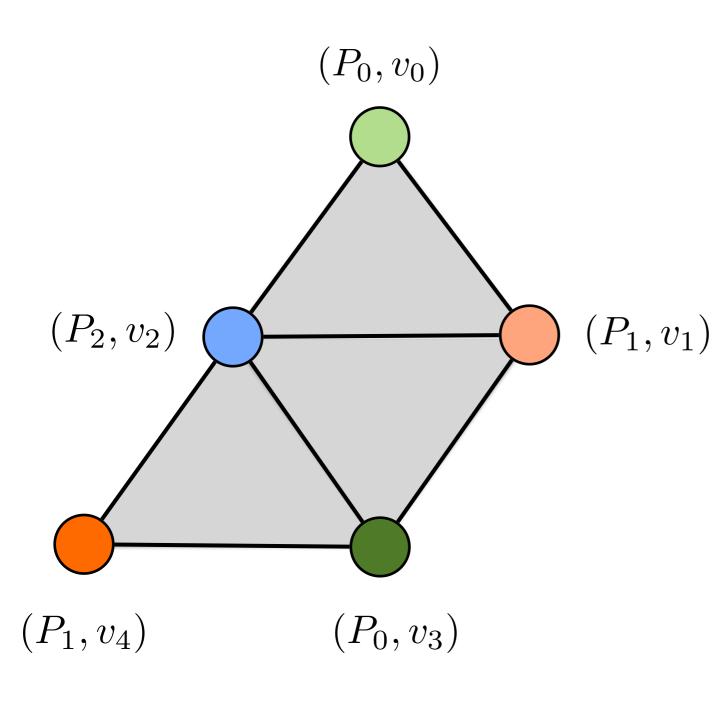
Let's start with crash failures

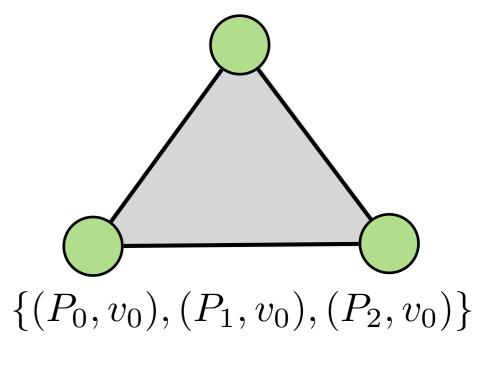




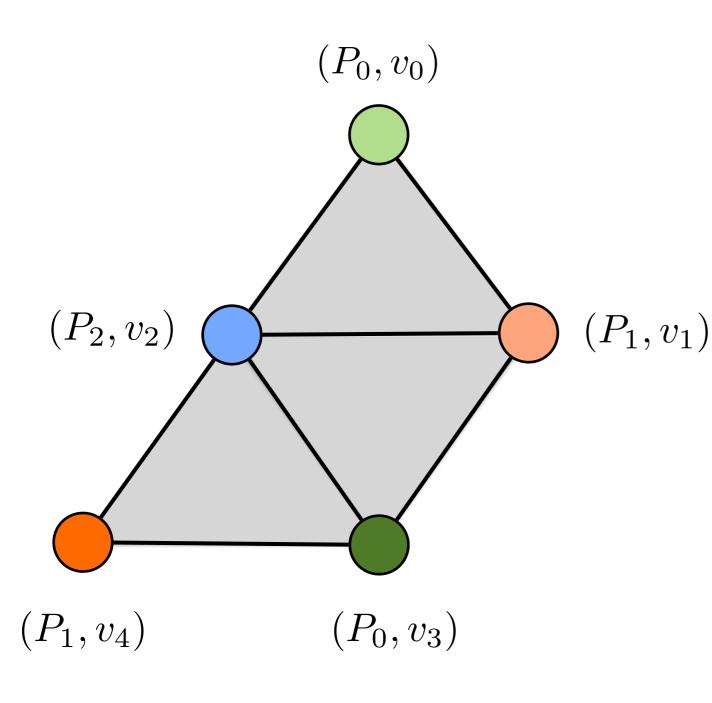


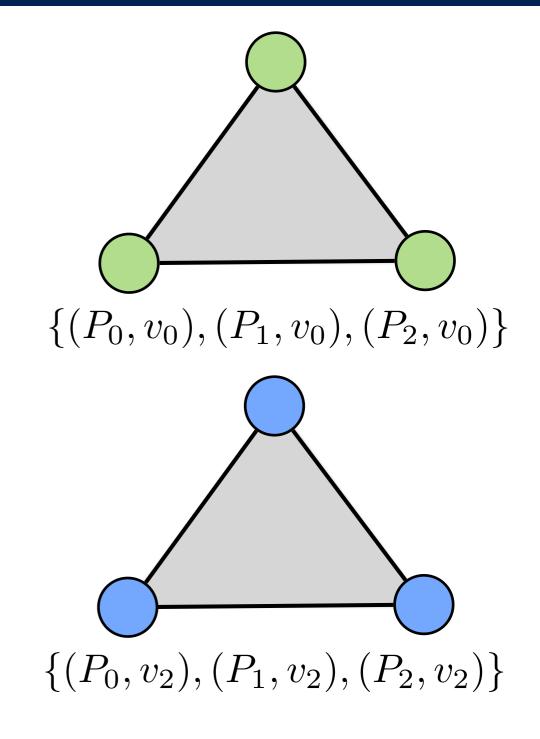




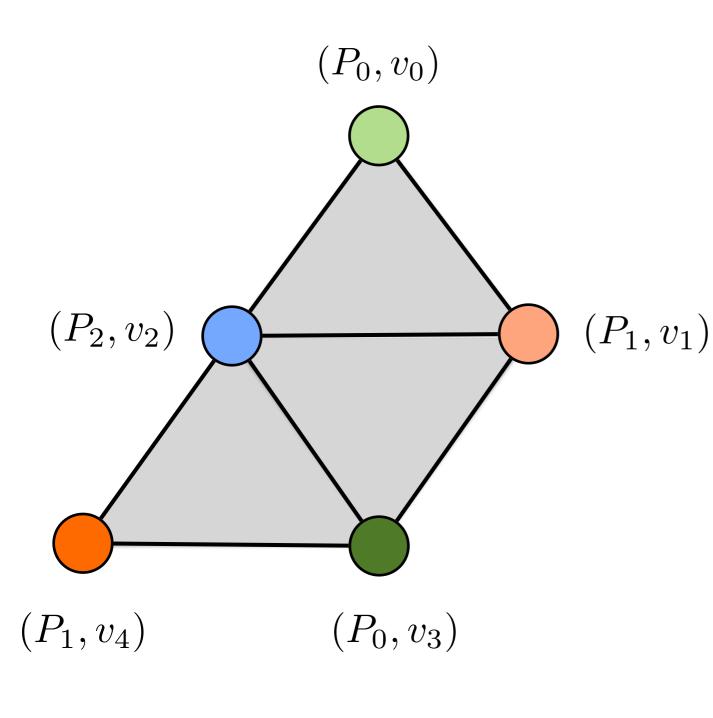


. . .

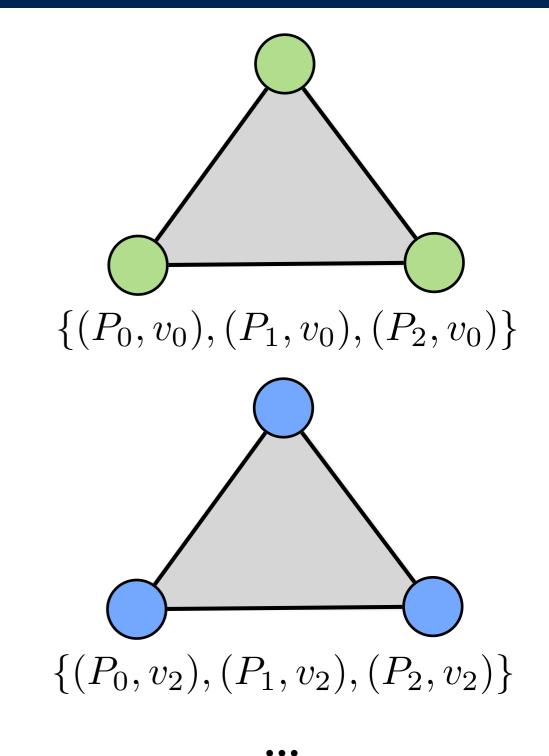


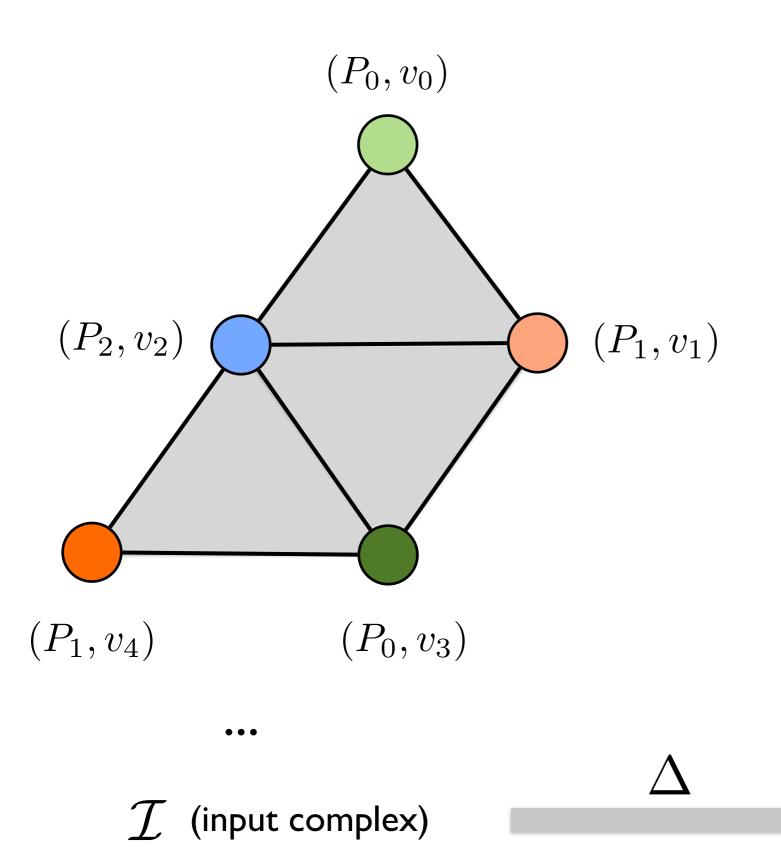


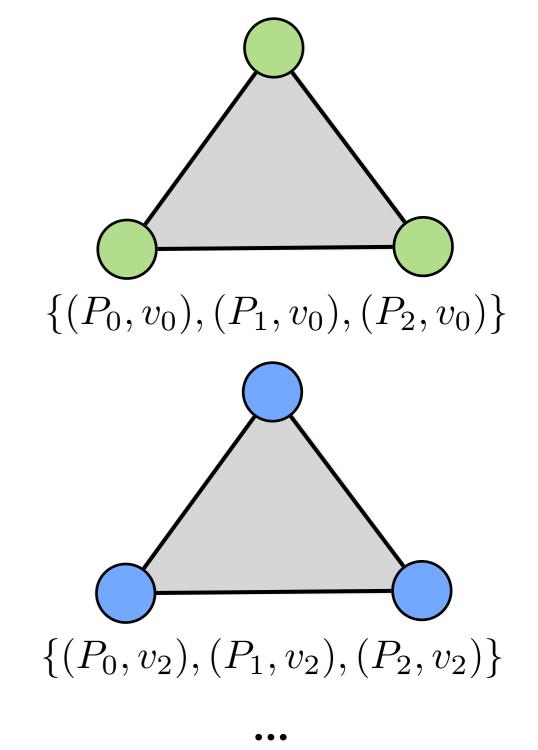
\mathcal{I} (input complex)



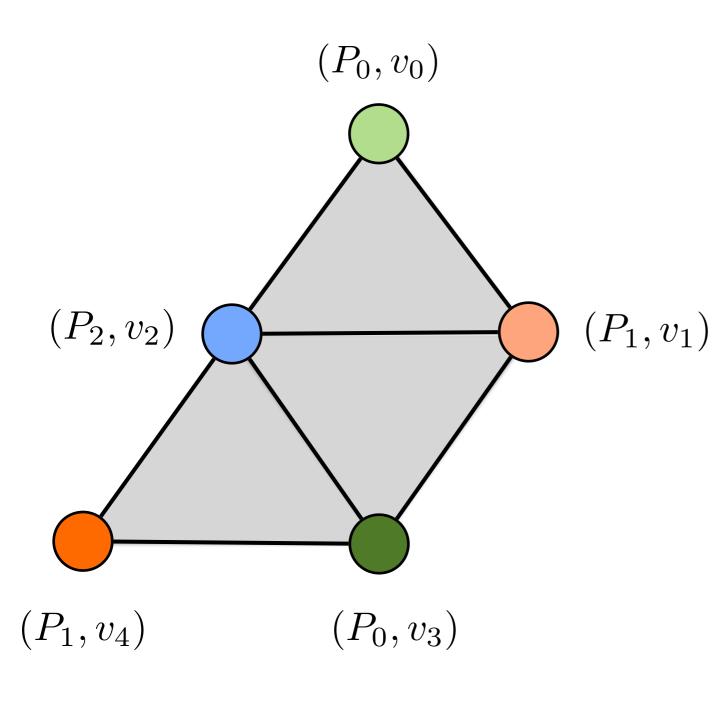
 \mathcal{I} (input complex)



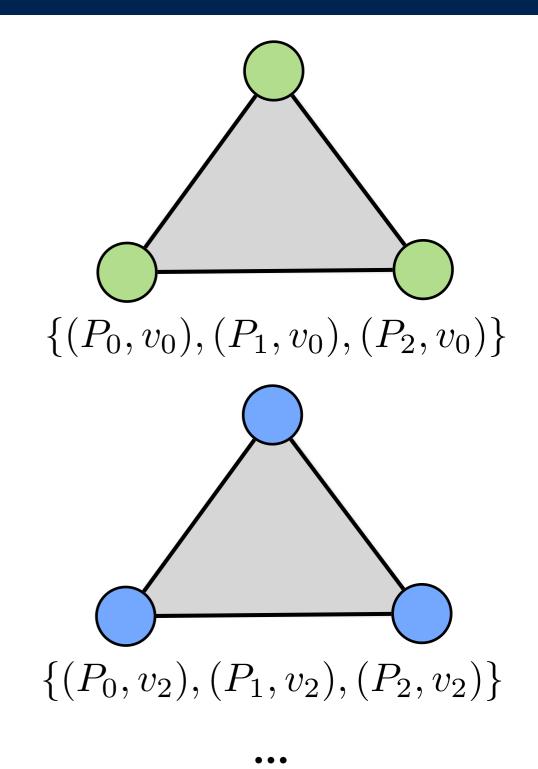


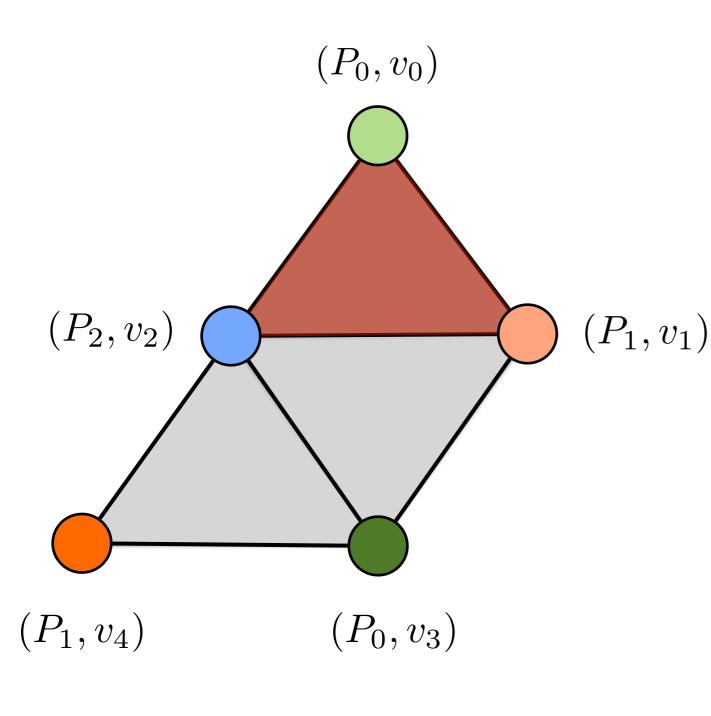


(output complex)

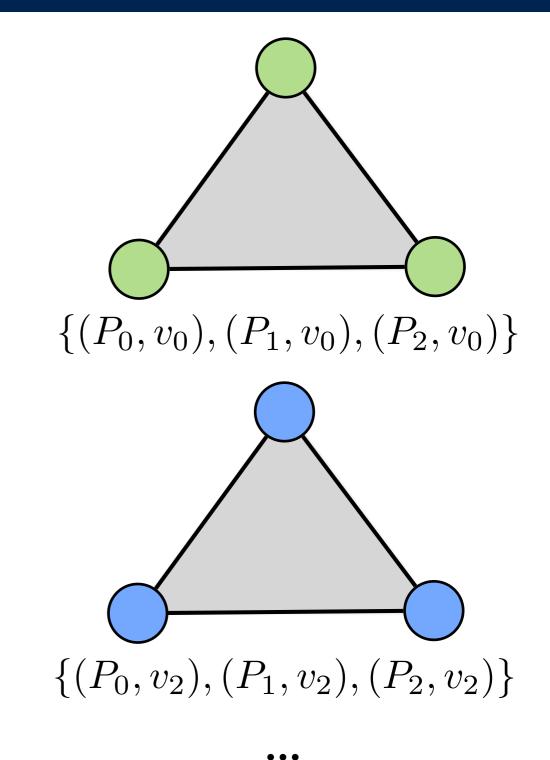


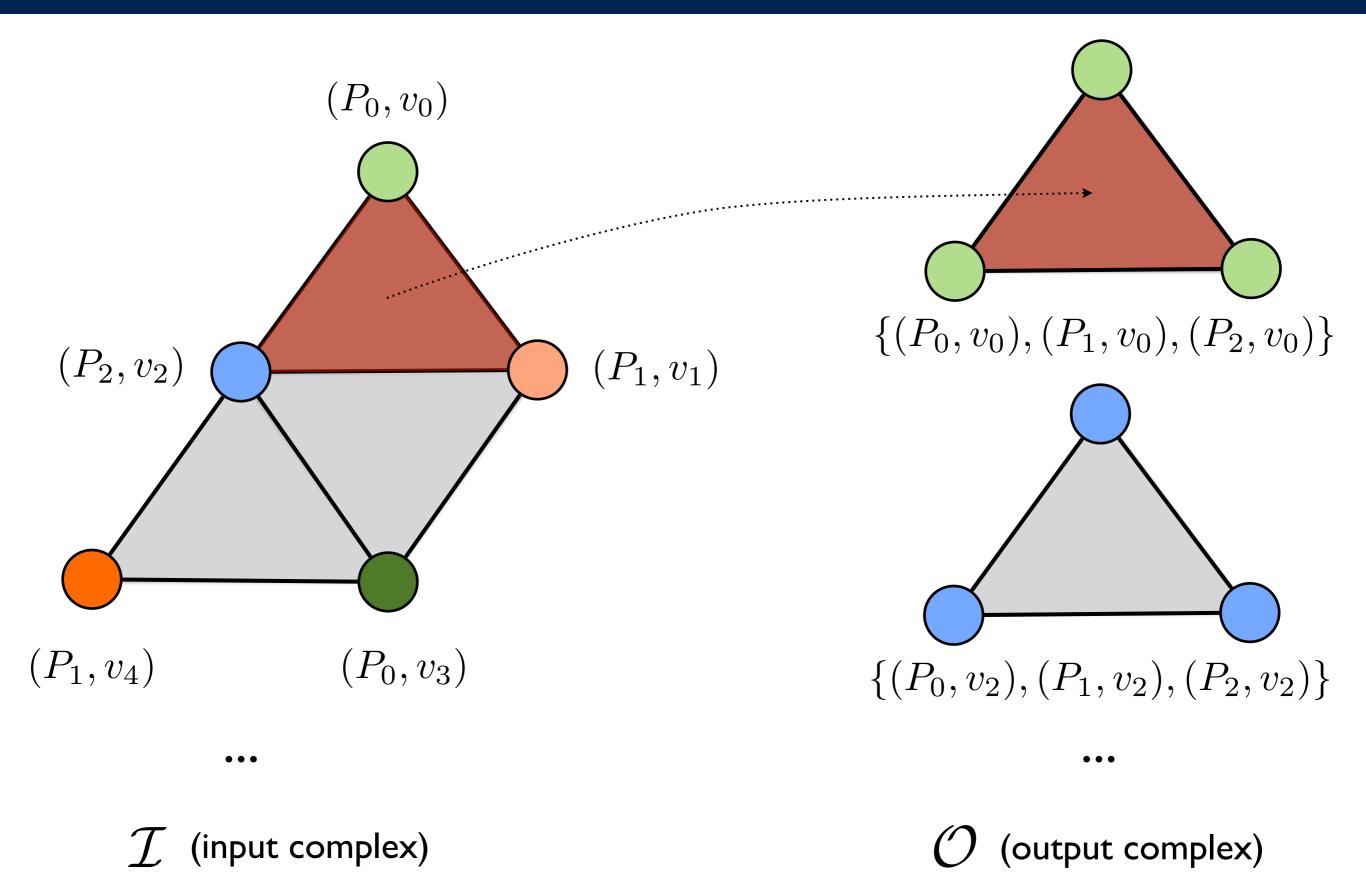
 \mathcal{I} (input complex)



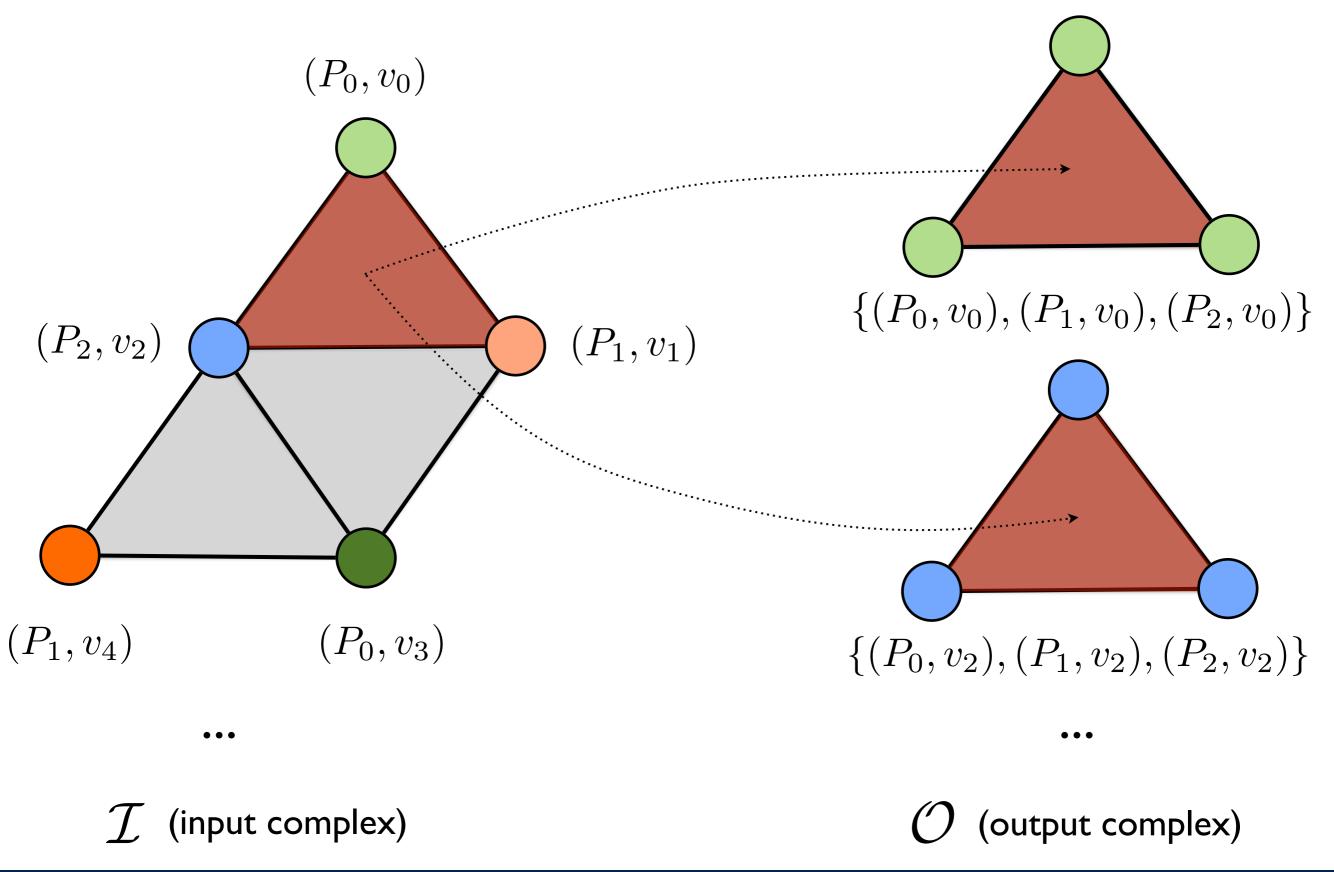


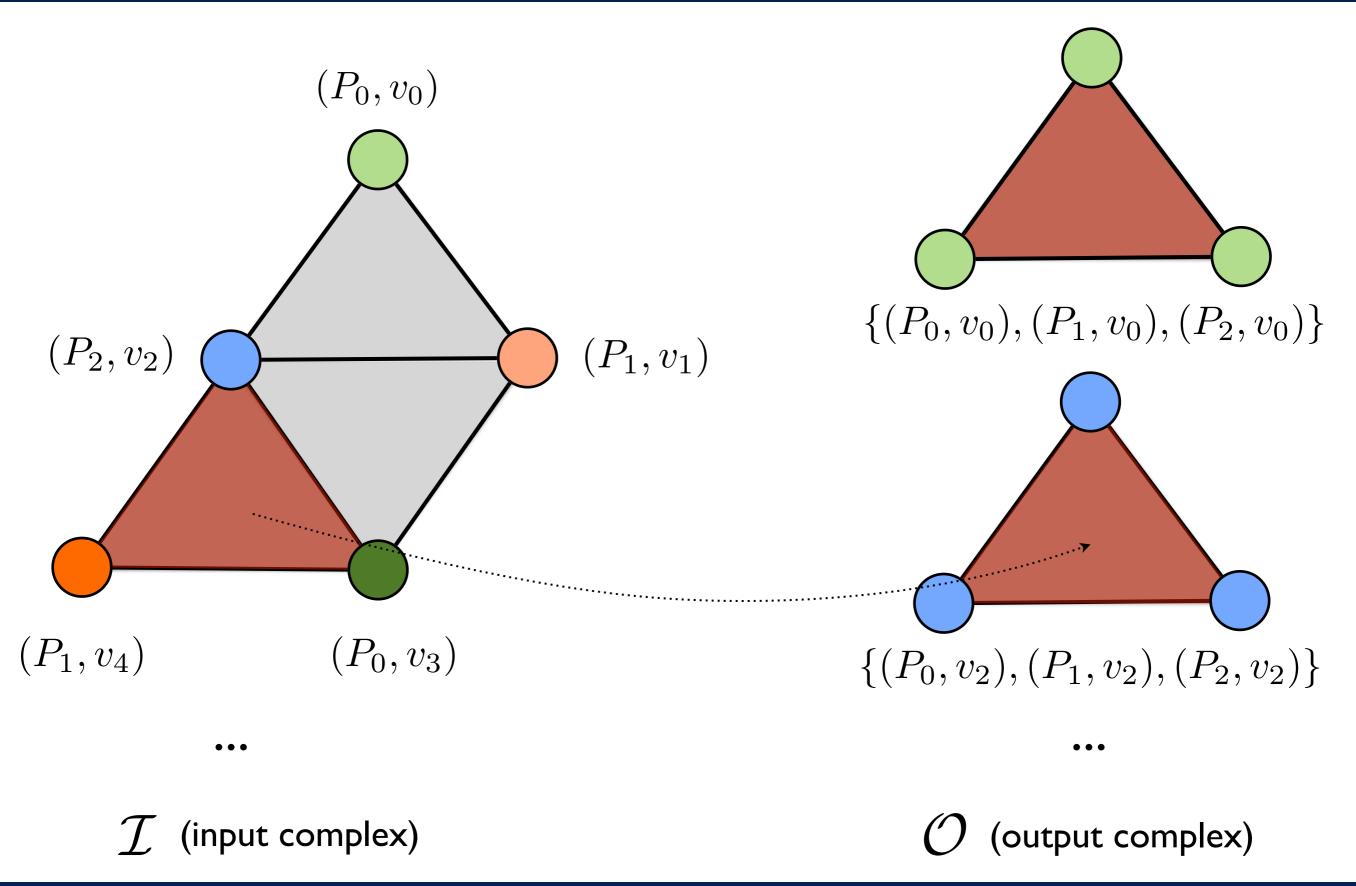
 \mathcal{I} (input complex)

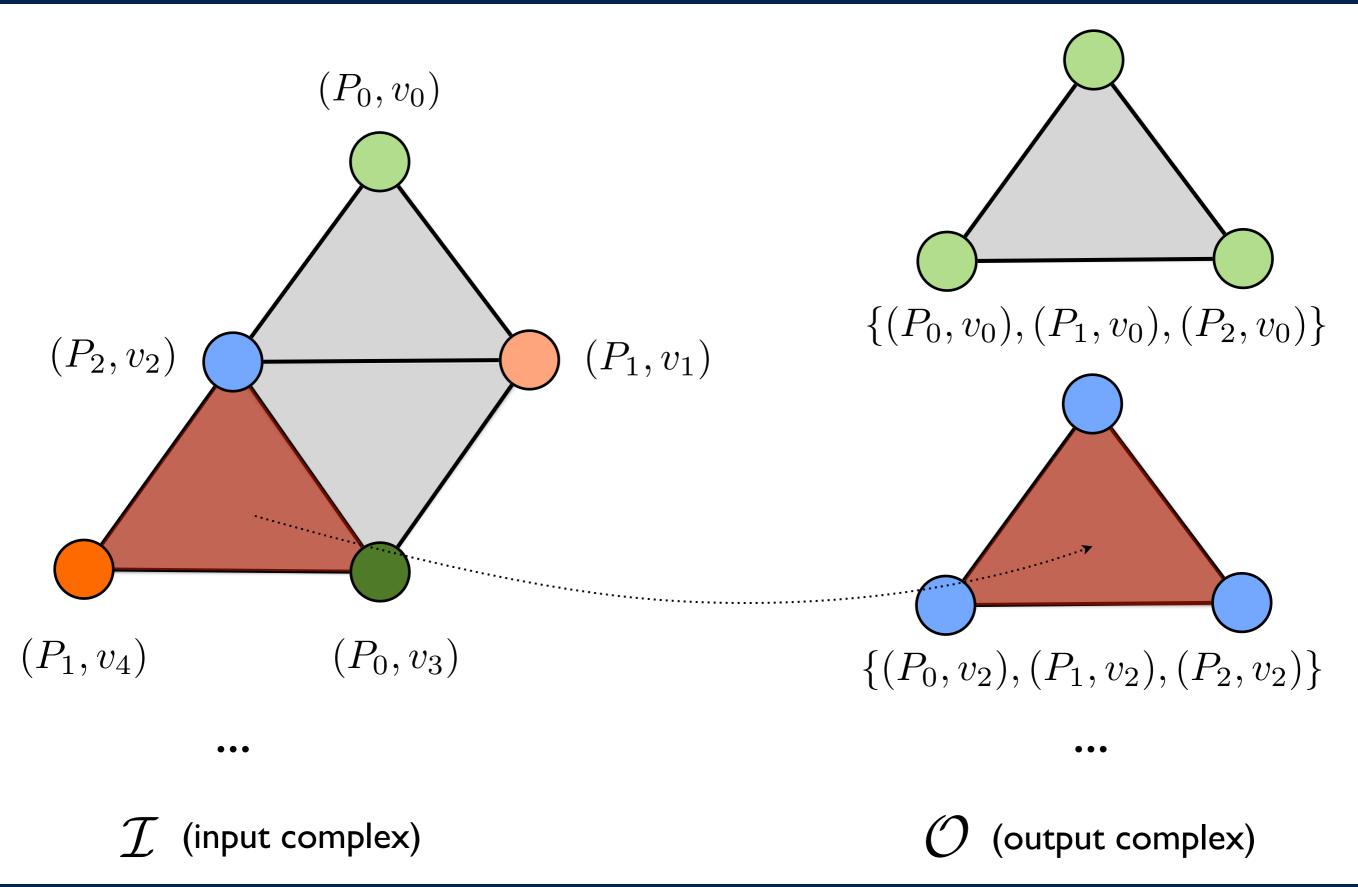


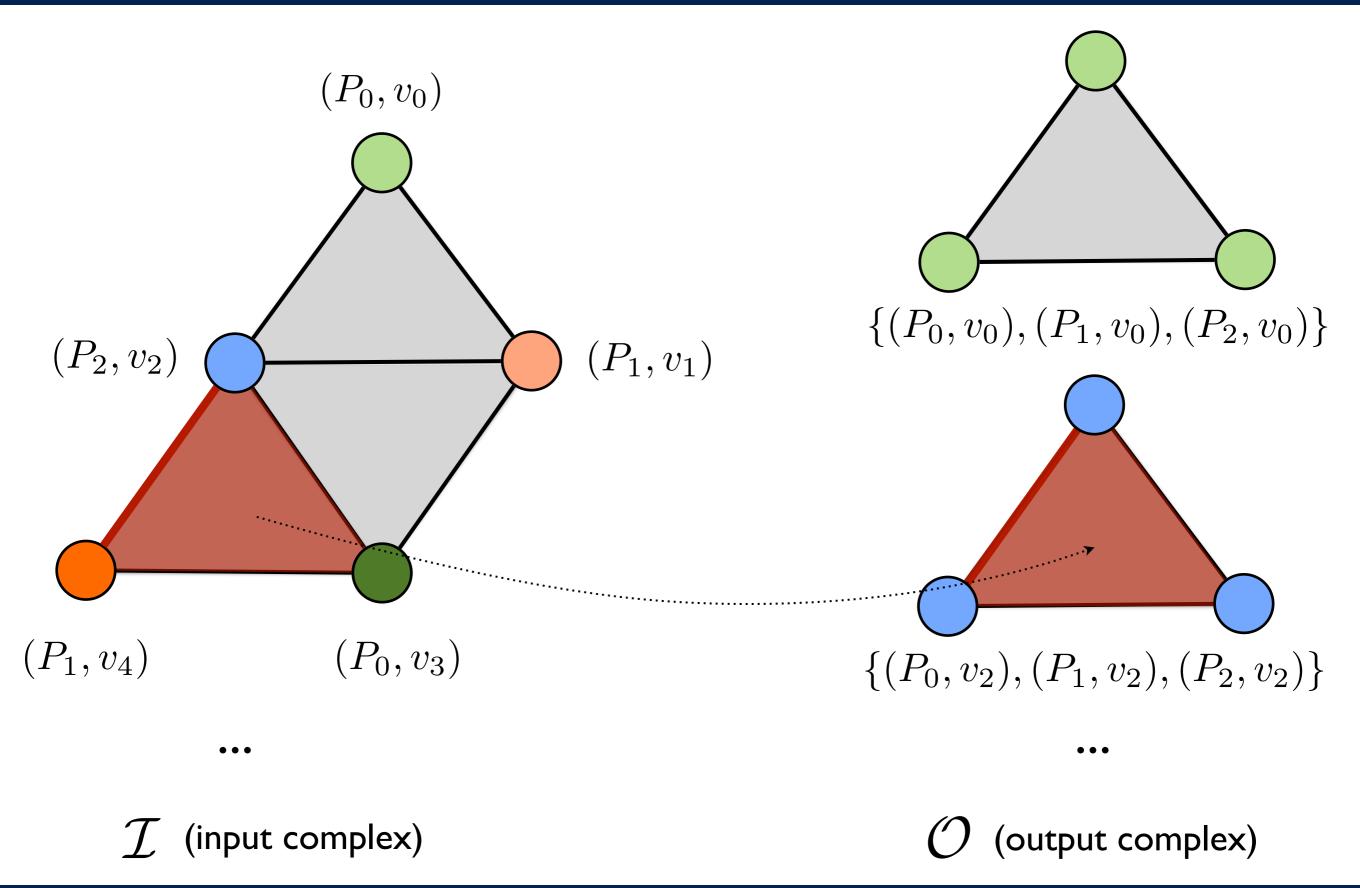


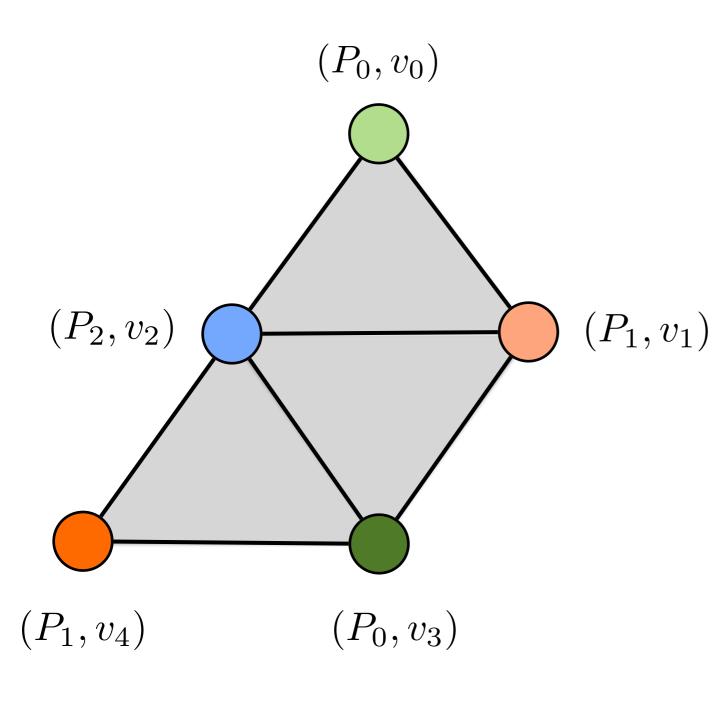
15



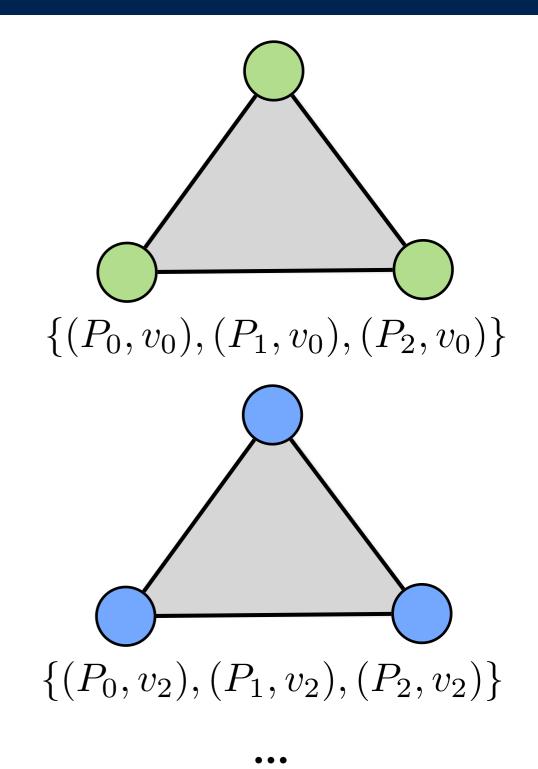






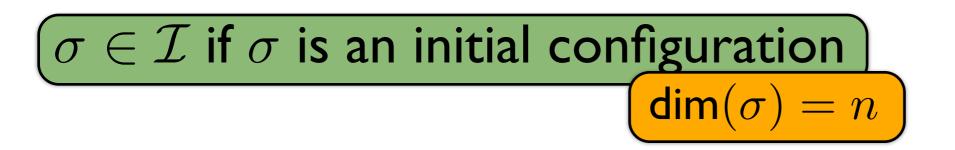


 \mathcal{I} (input complex)



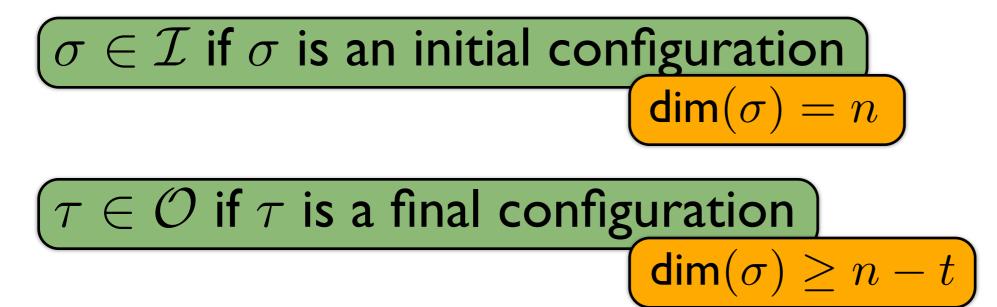
In the crash-failure model: $(\mathcal{I}, \mathcal{O}, \Delta)$

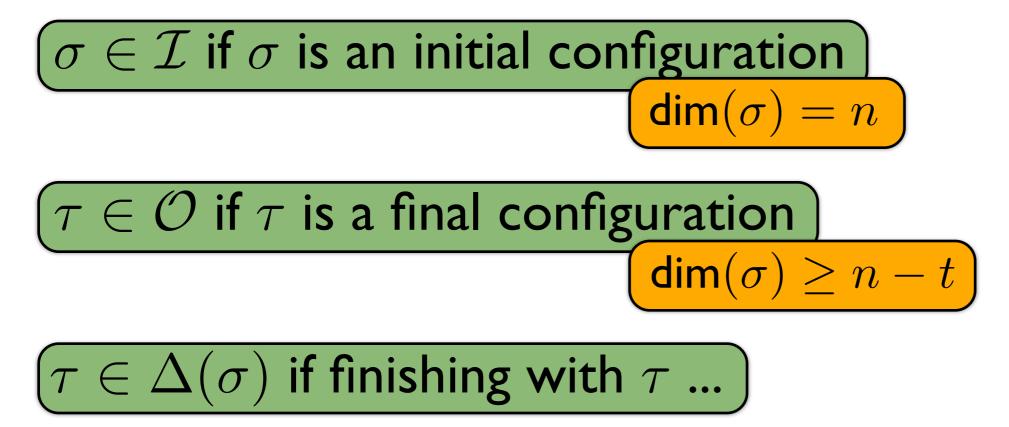
 $\sigma \in \mathcal{I}$ if σ is an initial configuration

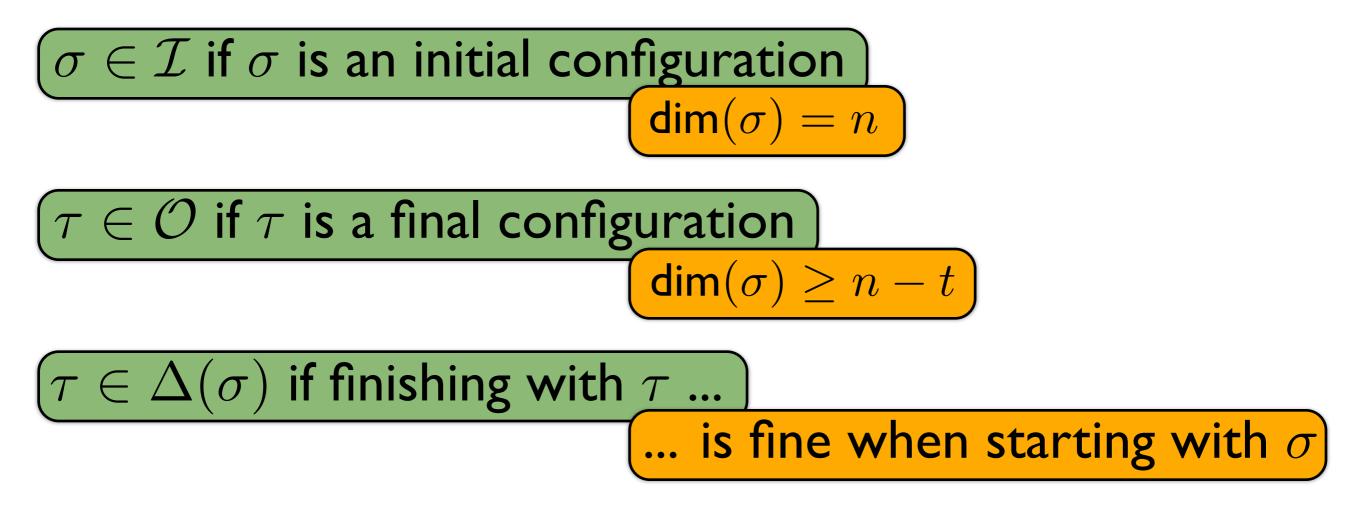


In the crash-failure model: $(\mathcal{I}, \mathcal{O}, \Delta)$

 $au \in \mathcal{O}$ if au is a final configuration)







The Topological Structure of Asynchronous Computability

1999!

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

The Topological Structure of Asynchronous Computability

1999!

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Crash-failure task is solvable if and only if

The Topological Structure of Asynchronous Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Crash-failure task is solvable if and only if

continuous map $f: |\mathcal{I}| \to |\mathcal{O}|$ carried by Δ

1999!

The Topological Structure of Asynchronous Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

continuous map $f: |\mathcal{I}| \to |\mathcal{O}|$ carried by Δ

1999!

I. Introduction

2. Asynchronous Byzantine Systems

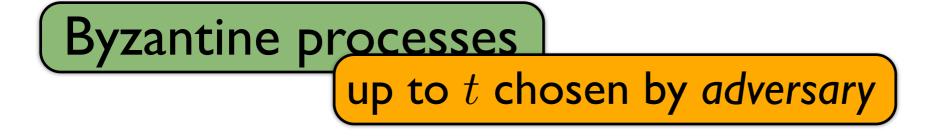
- 3. Synchronous Byzantine Systems
- 4. Conclusion & Future Work

I. Introduction

2.) Asynchronous Byzantine Systems

- 3. Synchronous Byzantine Systems
- 4. Conclusion & Future Work

up to t chosen by adversary

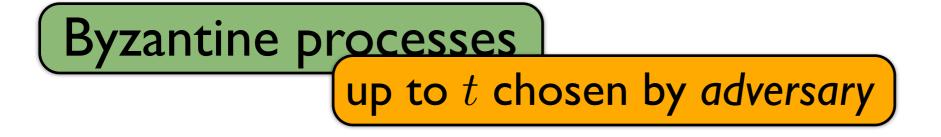


Non-faulty processes output values...

Byzantine processes up to t chosen by adversary

Non-faulty processes output values...

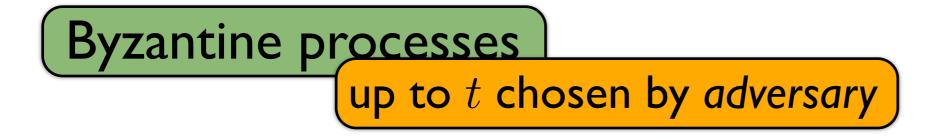
consistent



Non-faulty processes output values...

consistent

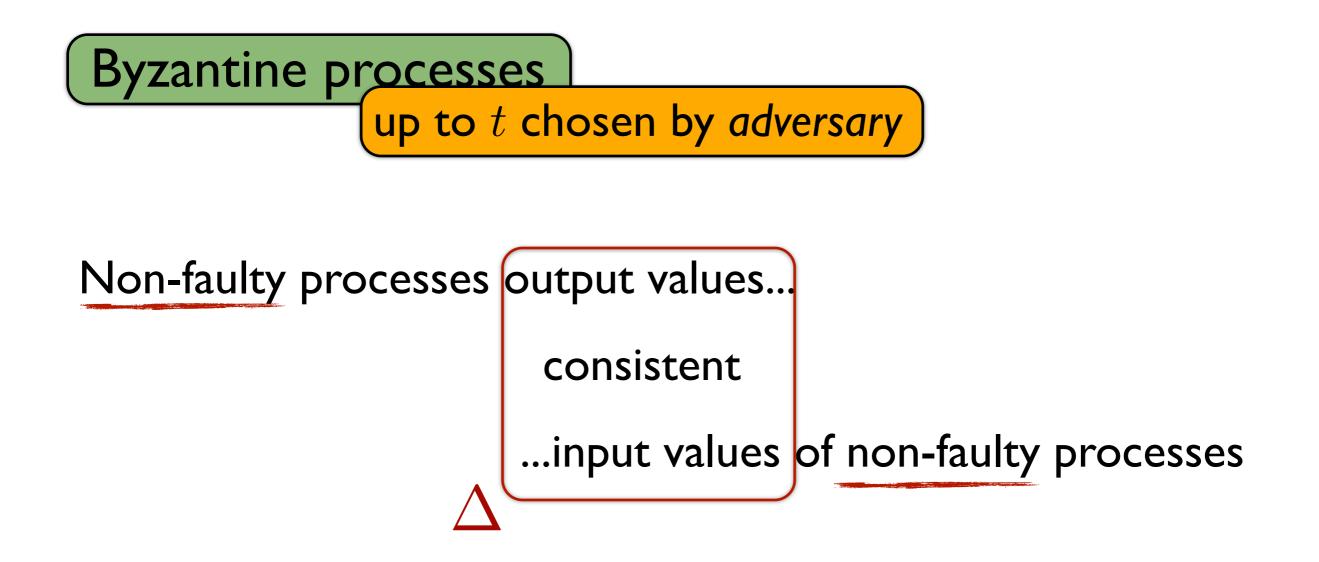
...input values of non-faulty processes

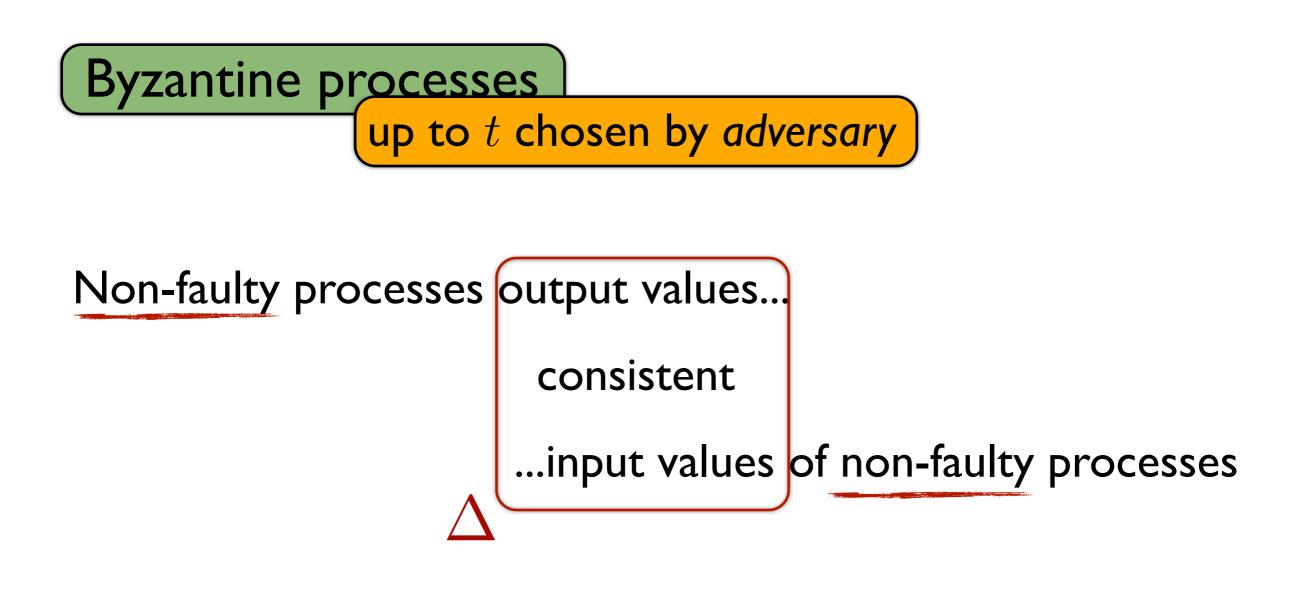


Non-faulty processes output values...

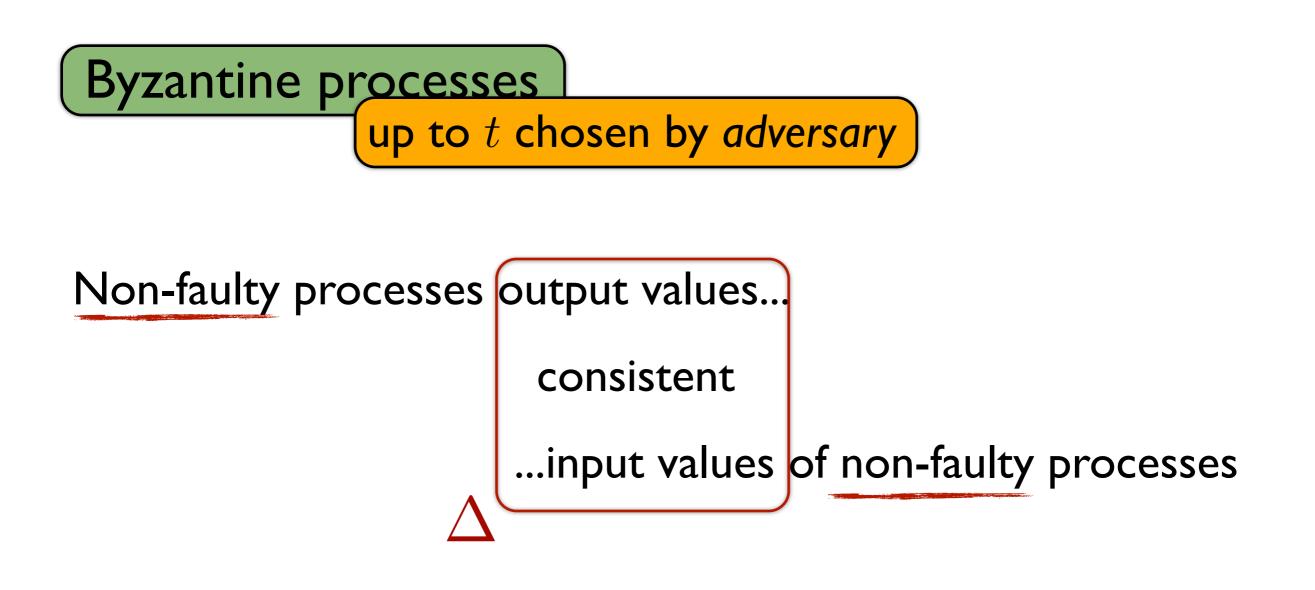
consistent

...input values of non-faulty processes





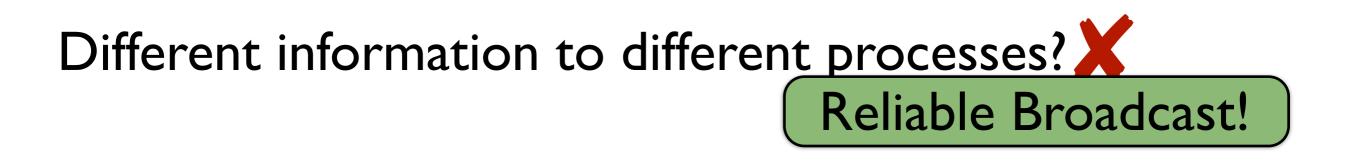
 Δ constrains non-faulty processes only



 Δ constrains non-faulty processes only

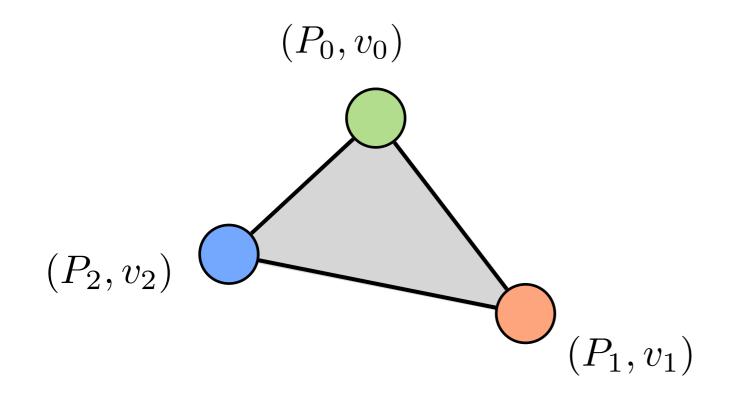
 ${\mathcal I}$ and ${\mathcal O}$ represent non-faulty processes only

Different information to different processes?

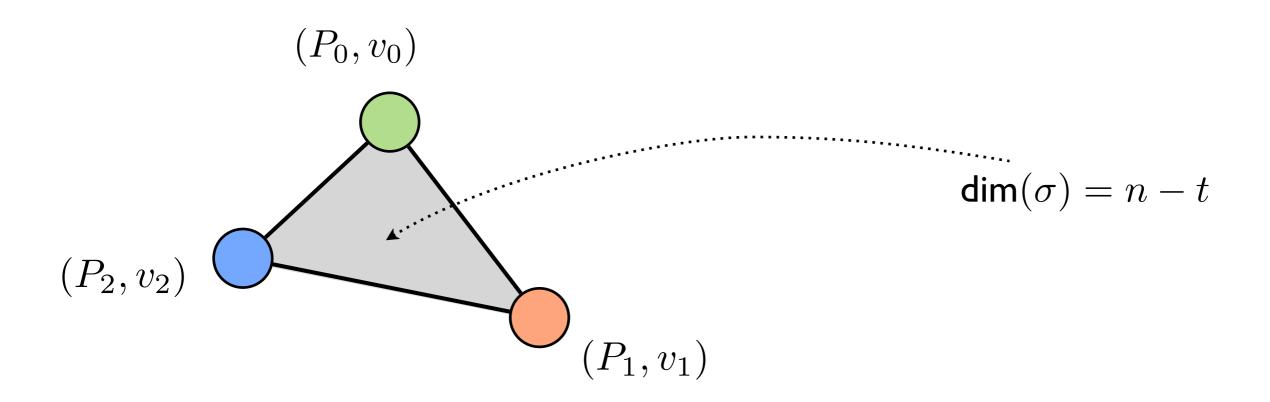


Different information to different processes? Reliable Broadcast!

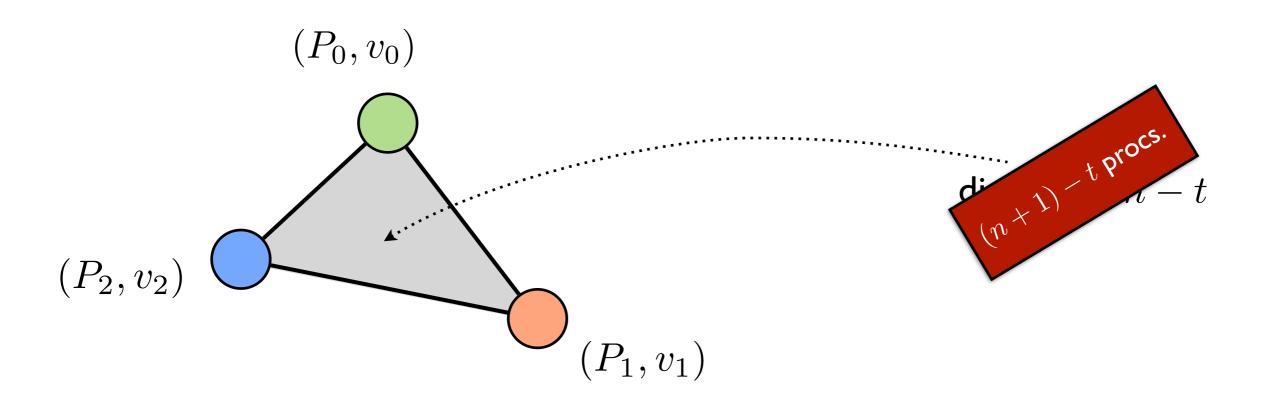
Different information to different processes? Reliable Broadcast!



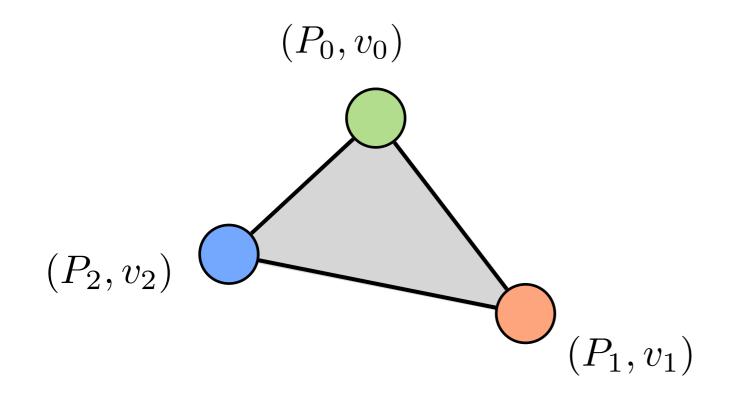
Different information to different processes? Reliable Broadcast!



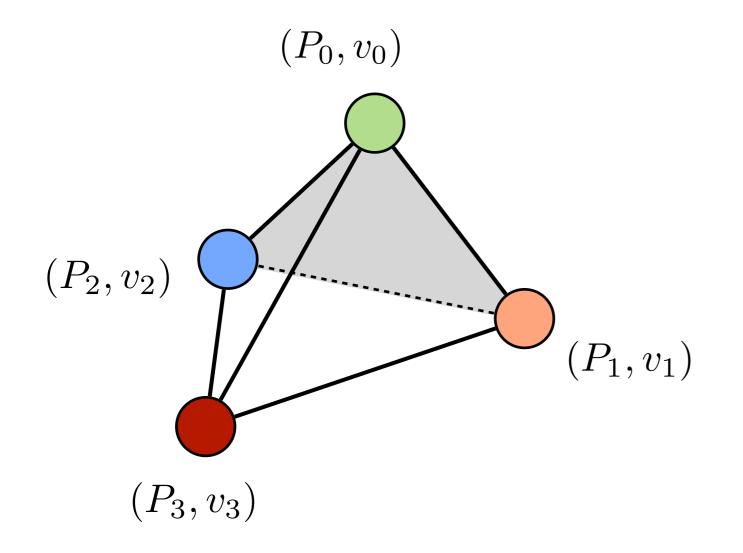
Different information to different processes? Reliable Broadcast!



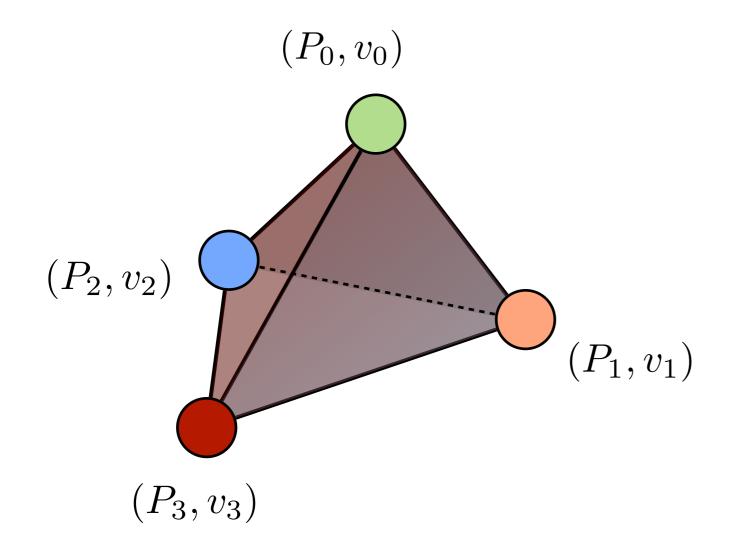
Different information to different processes? Reliable Broadcast!



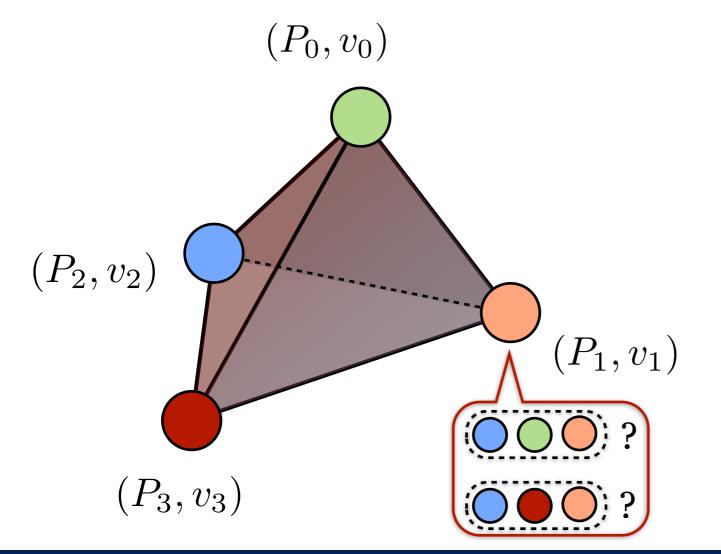
Different information to different processes? Reliable Broadcast!



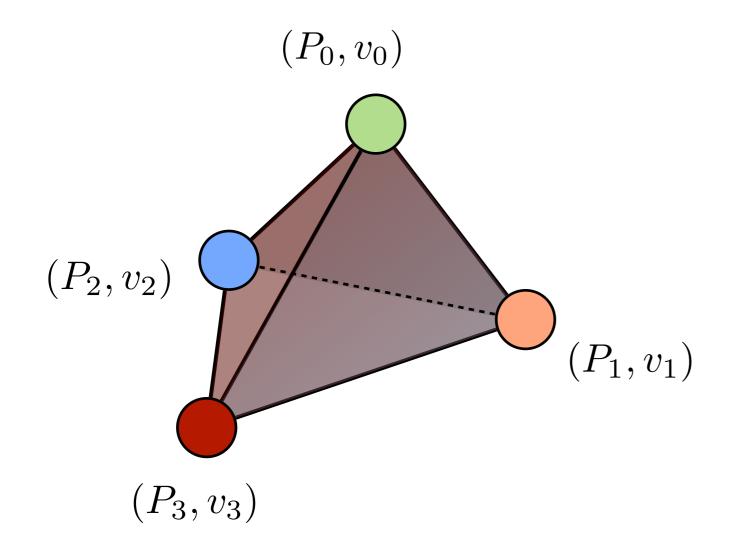
Different information to different processes? Reliable Broadcast!



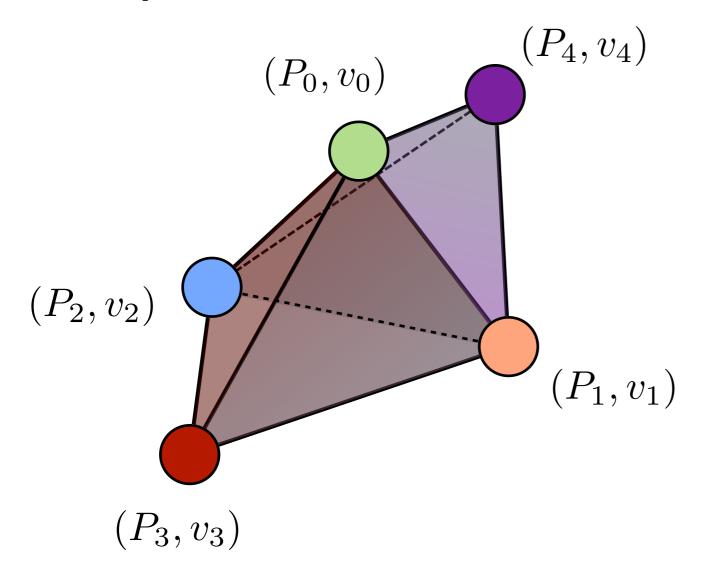
Different information to different processes? Reliable Broadcast!



Different information to different processes? Reliable Broadcast!

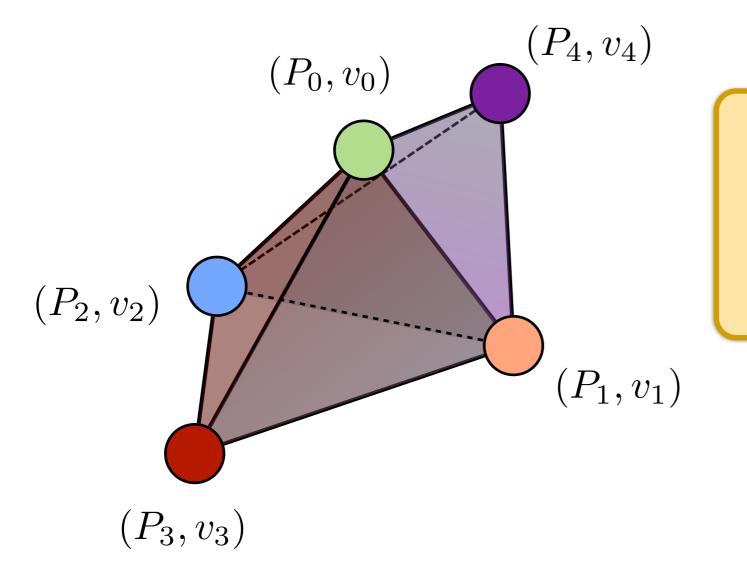


Different information to different processes? Reliable Broadcast!



Different information to different processes? Reliable Broadcast!

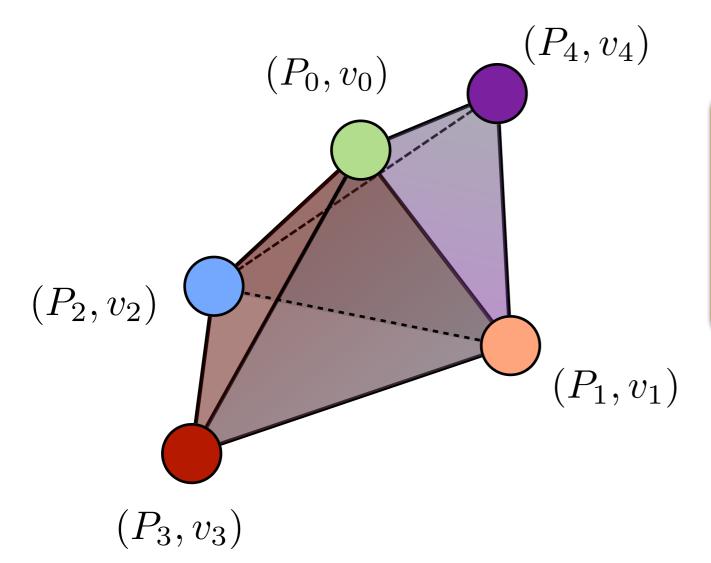
Real problem is:



Byzantine processes pick fake inputs...

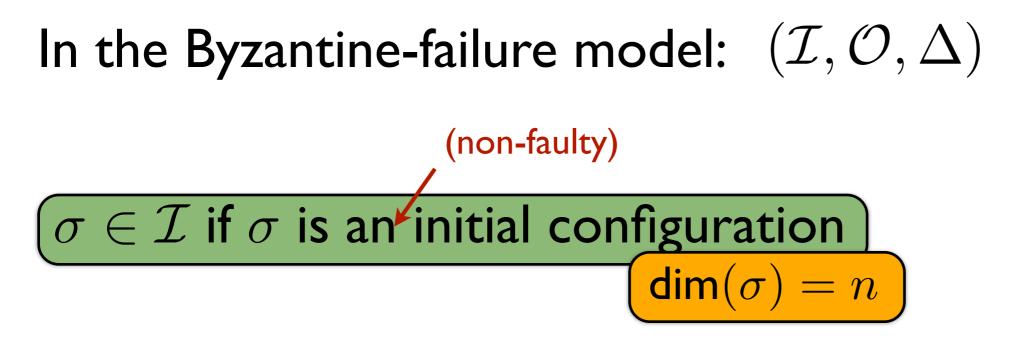
Different information to different processes? Reliable Broadcast!

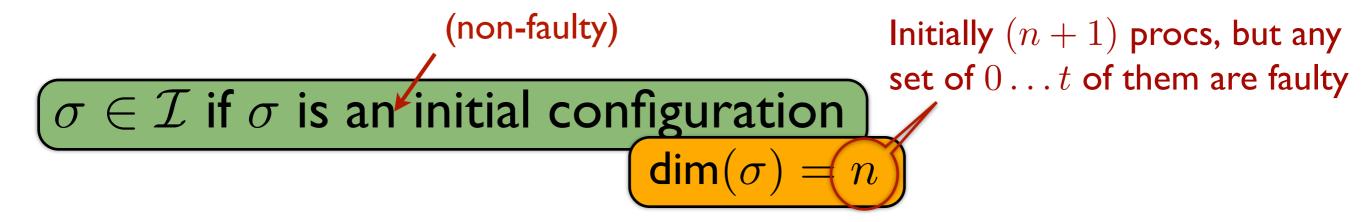
Real problem is:

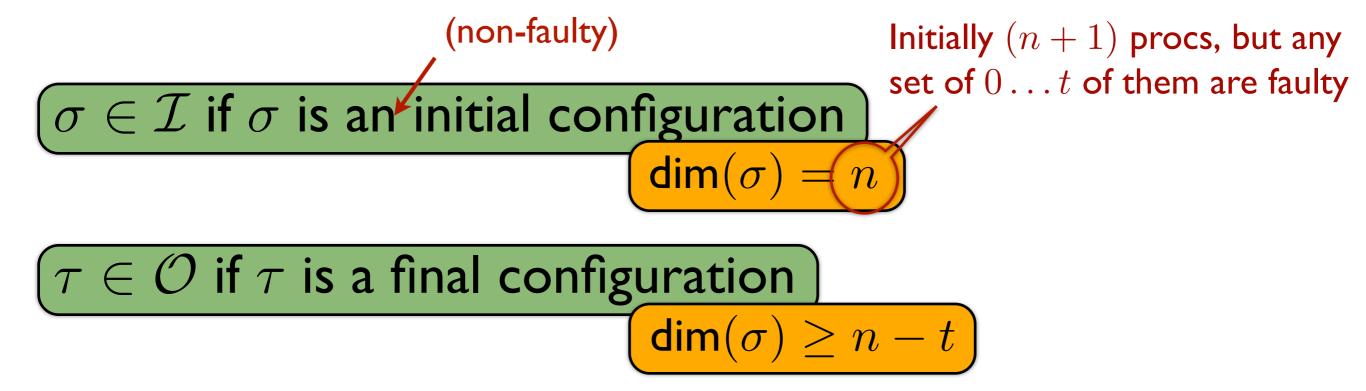


Byzantine processes pick fake inputs...

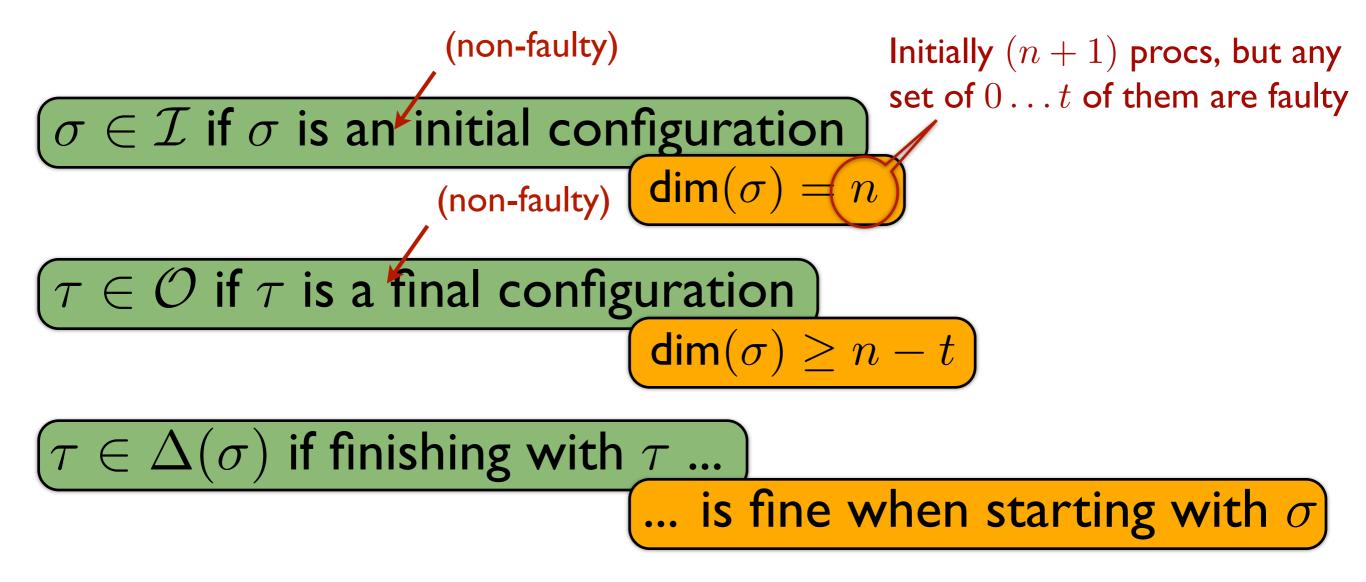
... yet behave "correctly"

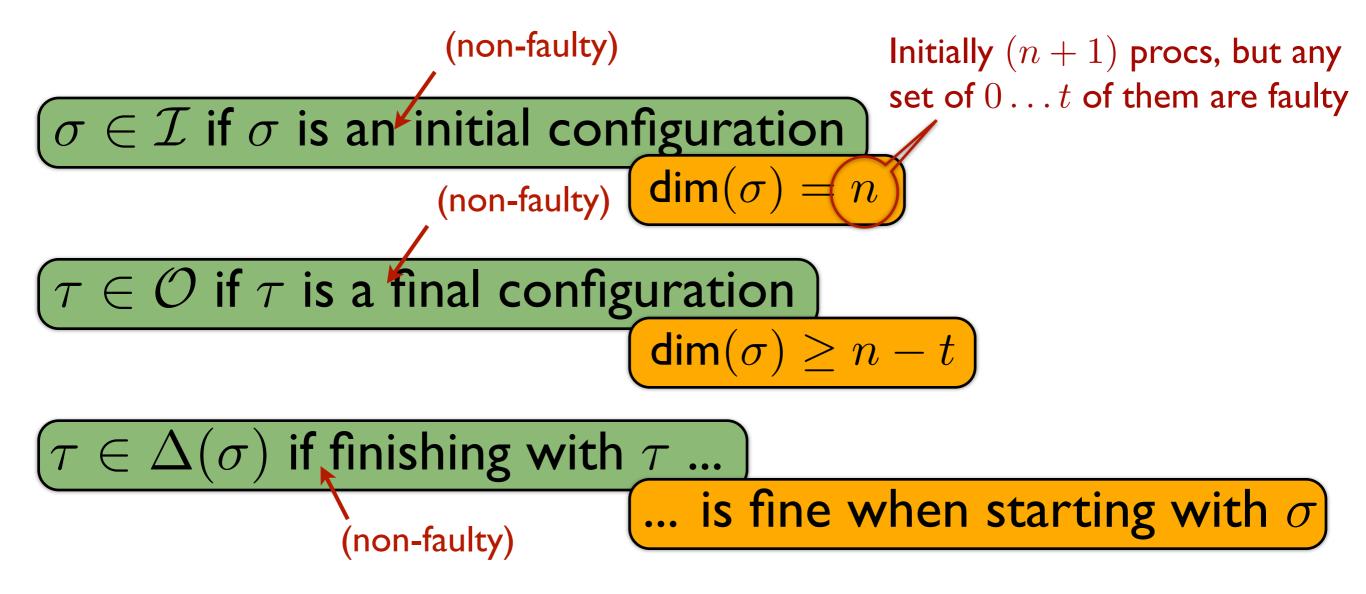


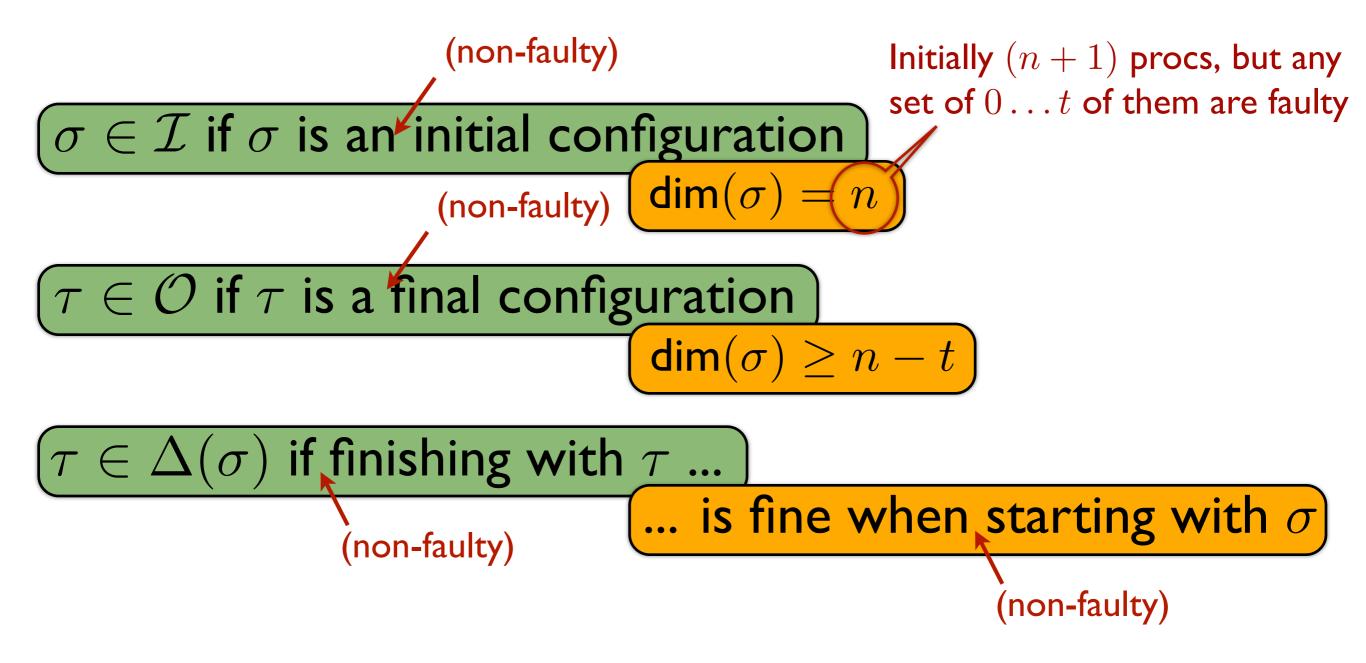












When are these Byzantine tasks solvable?

Theorem: (Equivalence Theorem)

Theorem: (Equivalence Theorem)

A Byzantine task $(\mathcal{I},\mathcal{O},\Delta)$ solvable

Theorem: (Equivalence Theorem)

A Byzantine task $(\mathcal{I}, \mathcal{O}, \Delta)$ solvable \Leftrightarrow

 $\begin{array}{l} \textbf{Theorem: (Equivalence Theorem)} \\ \textbf{A Byzantine task } (\mathcal{I}, \mathcal{O}, \Delta) \text{ solvable} \\ \Leftrightarrow \\ \textbf{its } \textit{dual crash-failure task } (\tilde{\mathcal{I}}, \tilde{\mathcal{O}}, \tilde{\Delta}) \text{ solvable.} \end{array}$

Theorem: (Equivalence Theorem) A Byzantine task $(\mathcal{I}, \mathcal{O}, \Delta)$ solvable \Leftrightarrow its dual crash-failure task $(\tilde{\mathcal{I}}, \tilde{\mathcal{O}}, \tilde{\Delta})$ solvable.

Theorem: (Equivalence Theorem) A Byzantine task $(\mathcal{I}, \mathcal{O}, \Delta)$ solvable \Leftrightarrow its dual crash-failure task $(\tilde{\mathcal{I}}, \tilde{\mathcal{O}}, \tilde{\Delta})$ solvable. translated from $(\mathcal{I}, \mathcal{O}, \Delta)$

Theorem: (Equivalence Theorem) A Byzantine task $(\mathcal{I}, \mathcal{O}, \Delta)$ solvable \Leftrightarrow its dual crash-failure task $(\tilde{\mathcal{I}}, \tilde{\mathcal{O}}, \tilde{\Delta})$ solvable. translated from $(\mathcal{I}, \mathcal{O}, \Delta)$

In [STOCI4], we show what is the dual task,

Theorem: (Equivalence Theorem) A Byzantine task $(\mathcal{I}, \mathcal{O}, \Delta)$ solvable \Leftrightarrow its dual crash-failure task $(\tilde{\mathcal{I}}, \tilde{\mathcal{O}}, \tilde{\Delta})$ solvable. translated from $(\mathcal{I}, \mathcal{O}, \Delta)$

In [STOC14], we show what is the dual task,

and how the equivalence holds

Algorithmic methods* used to prove theorem

Algorithmic methods* used to prove theorem

* simulations, reductions

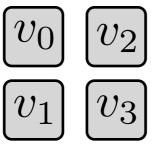
[STOCI4]

 $\begin{array}{l} \textbf{Theorem: (Equivalence Theorem)} \\ \textbf{A Byzantine task } (\mathcal{I}, \mathcal{O}, \Delta) \text{ solvable} \\ \Leftrightarrow \\ \textbf{its } \textit{dual crash-failure task } (\tilde{\mathcal{I}}, \tilde{\mathcal{O}}, \tilde{\Delta}) \text{ solvable.} \end{array}$

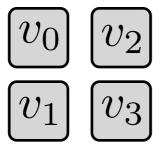
Theorem: (Equivalence Theorem) A Byzantine task $(\mathcal{I}, \mathcal{O}, \Delta)$ solvable \Leftrightarrow its dual crash-failure task $(\tilde{\mathcal{I}}, \tilde{\mathcal{O}}, \tilde{\Delta})$ solvable. protocol $\Leftrightarrow \exists$ continuous $f: |\tilde{\mathcal{I}}| \to |\tilde{\mathcal{O}}|$ carried by $\tilde{\Delta}$

Start with any of

Start with any of

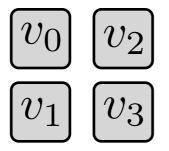


Start with any of

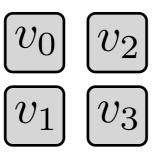


Finish with $\leq k$ of

Start with any of

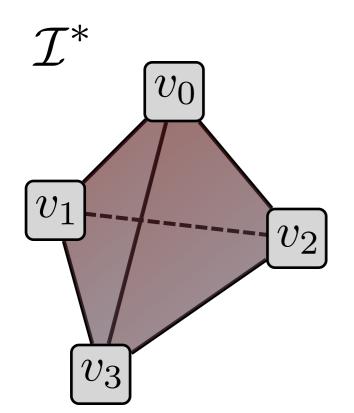


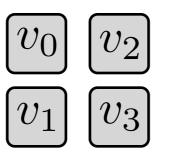
Finish with $\leq k$ of (k = 2)



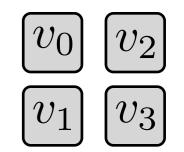
Finish with $\leq k$ of (k = 2)

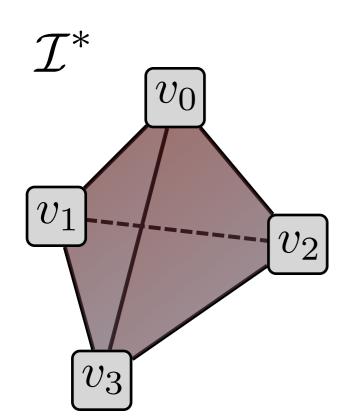
 v_0 v_2 $|v_3|$ $|v_1|$

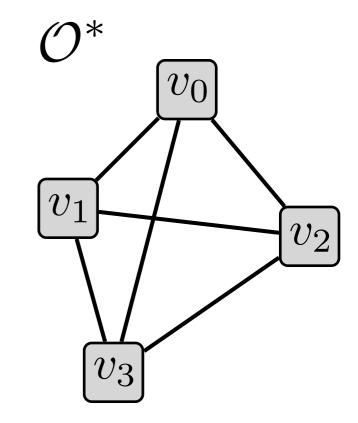


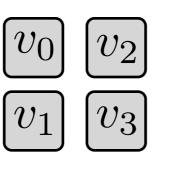


Finish with $\leq k$ of (k = 2)

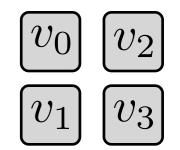


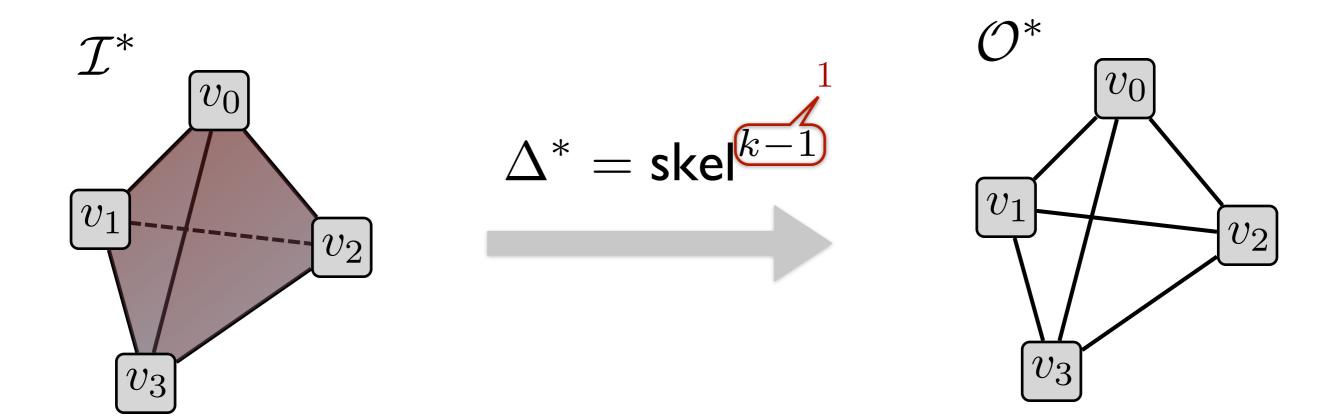


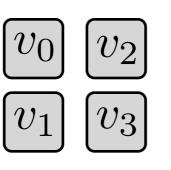




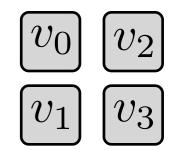
Finish with $\leq k$ of (k = 2)

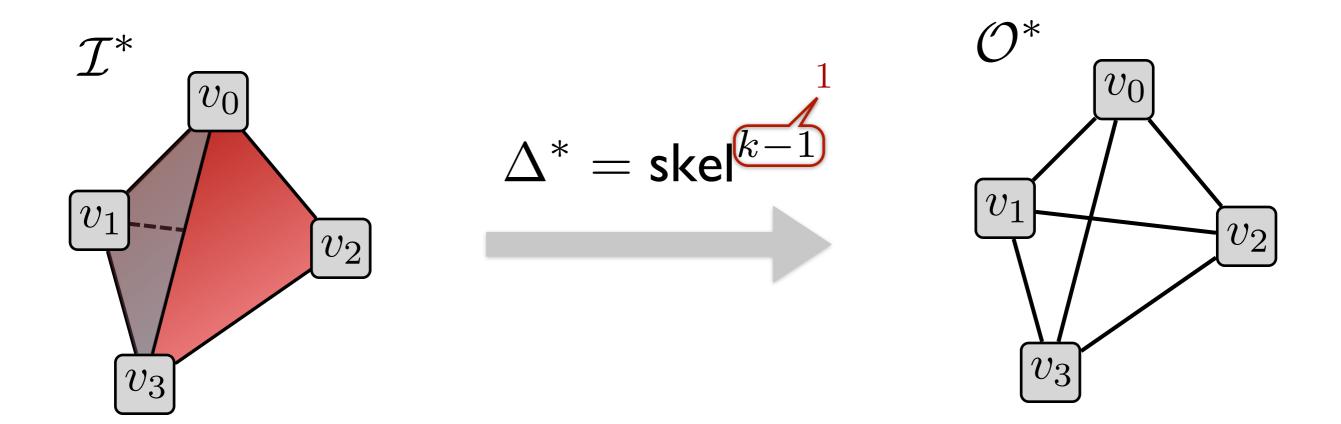


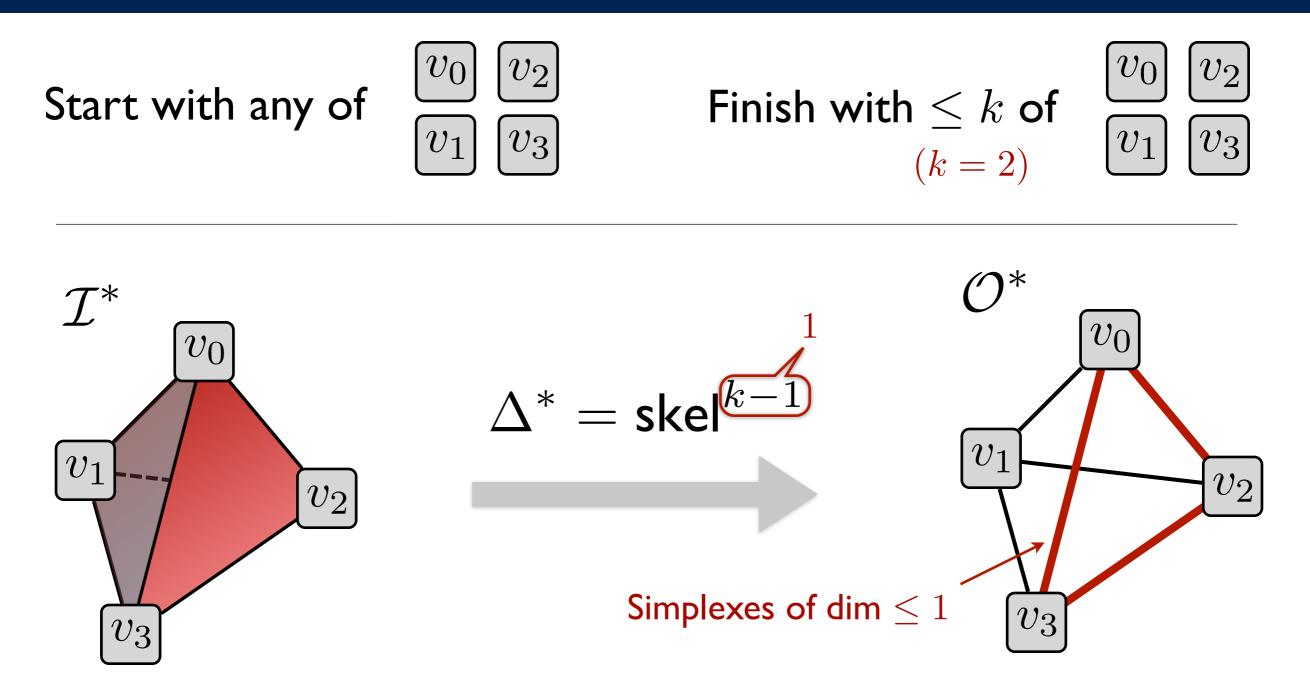


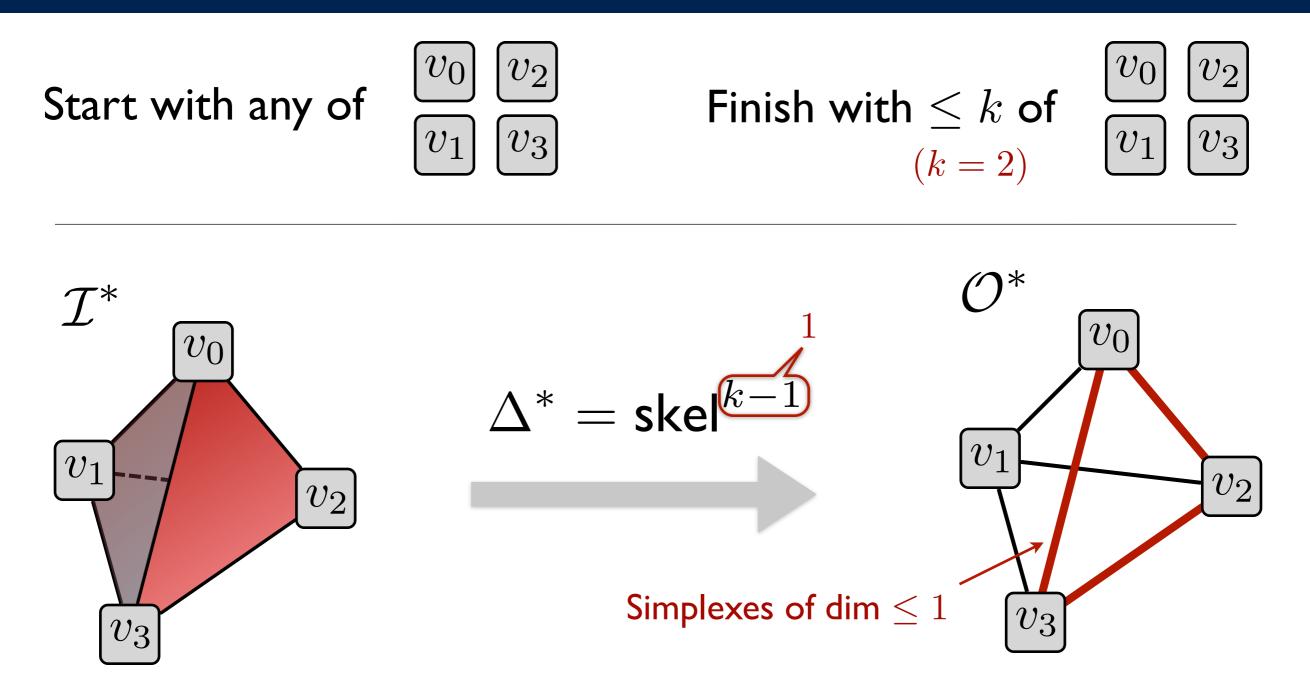


Finish with $\leq k$ of (k = 2)









Strict k-set agreement

Theorem:

The strict (t + 1)-set agreement $(\mathcal{I}^*, \mathcal{O}^*, \text{skel}^t)$ has a *t*-resilient Byzantine asynchronous protocol *iff*

Theorem:

The strict (t + 1)-set agreement $(\mathcal{I}^*, \mathcal{O}^*, \text{skel}^t)$ has a *t*-resilient Byzantine asynchronous protocol *iff* $n+1 > t(\dim(\mathcal{I}^*)+2) \text{ or } \dim(\mathcal{I}^*) \leq t.$

Theorem:

The strict (t+1)-set agreement $(\mathcal{I}^*, \mathcal{O}^*, \text{skel}^t)$ has a *t*-resilient Byzantine asynchronous protocol iff

$$n+1 > t(\dim(\mathcal{I}^*)+2)$$
 or $\dim(\mathcal{I}^*) \le t$.

Theorem:

The strict (t+1)-set agreement $(\mathcal{I}^*, \mathcal{O}^*, \text{skel}^t)$ has a *t*-resilient Byzantine asynchronous protocol *iff*

$$n+1 > t(\dim(\mathcal{I}^*)+2)$$
 or $\dim(\mathcal{I}^*) \le t$.

(application of our Equivalence Theorem)

Theorem:

For any colorless task $(\mathcal{I}^*, \mathcal{O}^*, \Delta^*)$, if

Theorem:

For any colorless task $(\mathcal{I}^*, \mathcal{O}^*, \Delta^*)$, if I. $n+1 > t(\dim(\mathcal{I}^*)+2)$

Theorem:

For any colorless task $(\mathcal{I}^*, \mathcal{O}^*, \Delta^*)$, if I. $n+1 > t(\dim(\mathcal{I}^*) + 2)$ 2. \exists continuous map $f : |\operatorname{skel}^t(\mathcal{I}^*)| \to |\mathcal{O}^*|$ carried by Δ^* ,

Theorem:

For any colorless task $(\mathcal{I}^*, \mathcal{O}^*, \Delta^*)$, if I. $n + 1 > t(\dim(\mathcal{I}^*) + 2)$ 2. \exists continuous map $f : |\operatorname{skel}^t(\mathcal{I}^*)| \to |\mathcal{O}^*|$ carried by Δ^* , we have a *t*-resilient Byzantine asynchronous protocol.

Theorem:

For any colorless task $(\mathcal{I}^*, \mathcal{O}^*, \Delta^*)$, if I. $n + 1 > t(\dim(\mathcal{I}^*) + 2)$ 2. \exists continuous map $f : |\operatorname{skel}^t(\mathcal{I}^*)| \to |\mathcal{O}^*|$ carried by Δ^* , we have a *t*-resilient Byzantine asynchronous protocol.

Proof sketch:

Theorem:

For any colorless task $(\mathcal{I}^*, \mathcal{O}^*, \Delta^*)$, if I. $n + 1 > t(\dim(\mathcal{I}^*) + 2)$ 2. \exists continuous map $f : |\operatorname{skel}^t(\mathcal{I}^*)| \to |\mathcal{O}^*|$ carried by Δ^* , we have a *t*-resilient Byzantine asynchronous protocol.

Proof sketch:

I. Run the Byzantine strict (t+1)-set agreement protocol, landing on a simplex in skel^t (\mathcal{I}^*) .

Theorem:

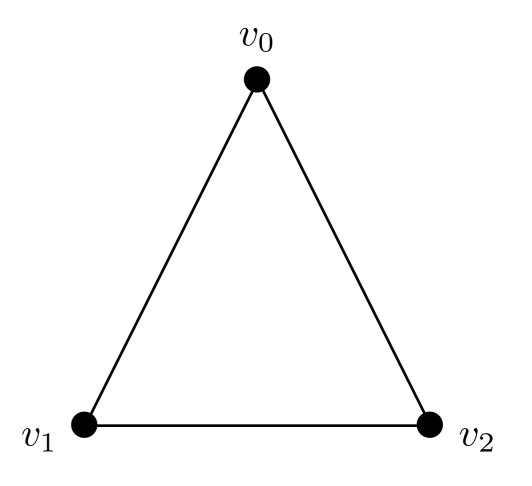
For any colorless task $(\mathcal{I}^*, \mathcal{O}^*, \Delta^*)$, if I. $n + 1 > t(\dim(\mathcal{I}^*) + 2)$ 2. \exists continuous map $f : |\operatorname{skel}^t(\mathcal{I}^*)| \to |\mathcal{O}^*|$ carried by Δ^* , we have a *t*-resilient Byzantine asynchronous protocol.

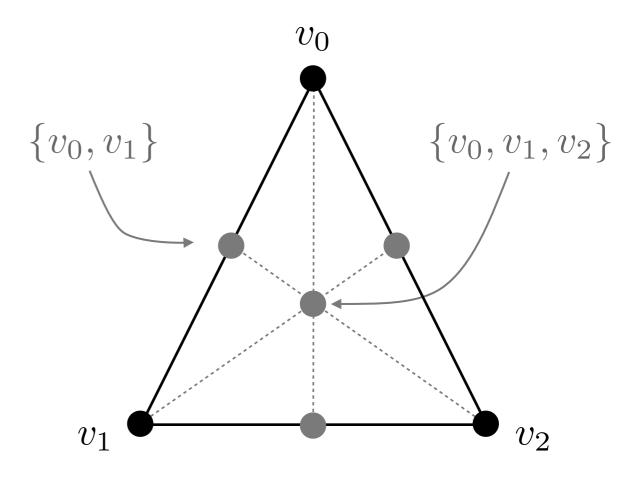
Proof sketch:

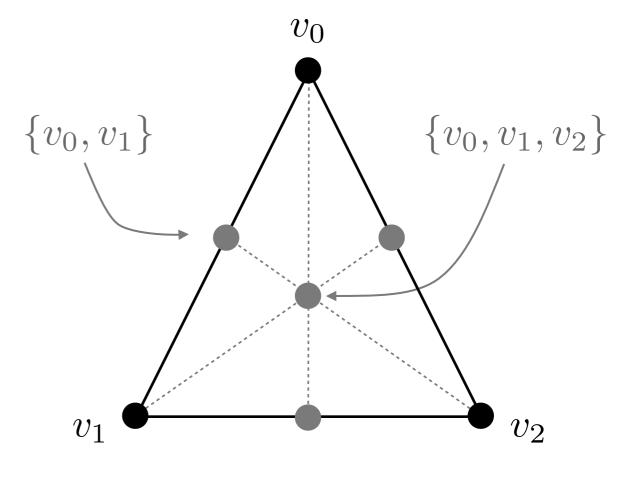
I. Run the Byzantine strict (t+1)-set agreement protocol, landing on a simplex in skel^t (\mathcal{I}^*) .

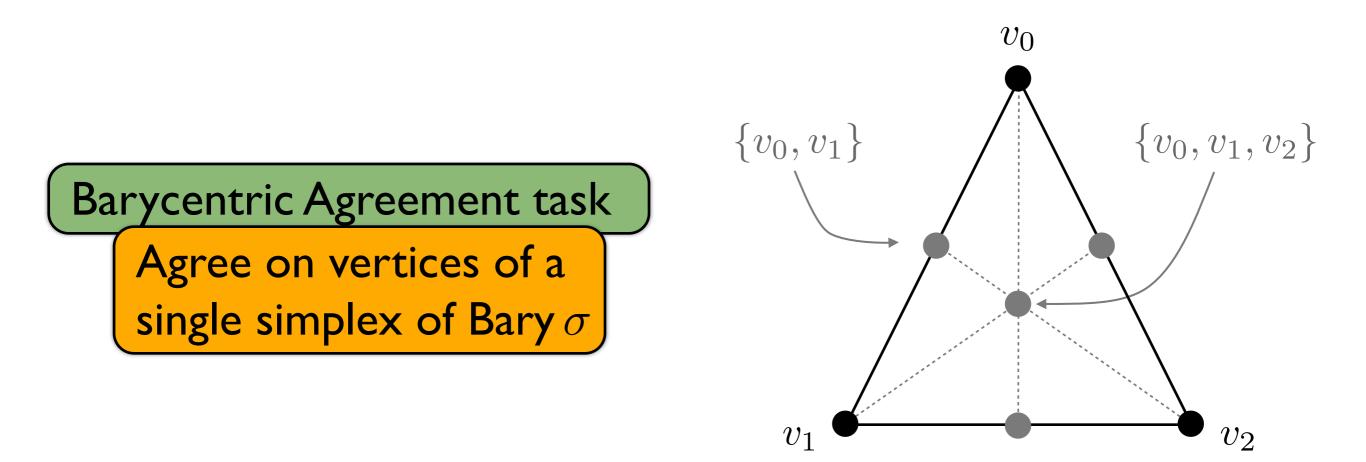
* Exchange values via Reliable Broadcast, and pick the 'smallest' one

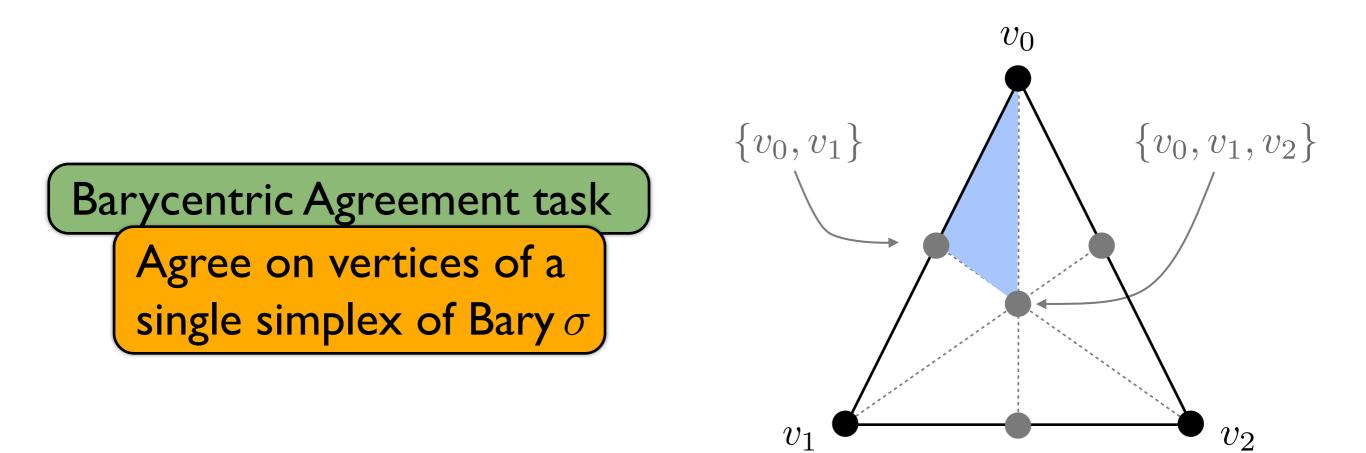
2 Run the Byzantine barycentric agreement protocol N times, landing on a simplex in Bary^N skel^t(\mathcal{I}^*).



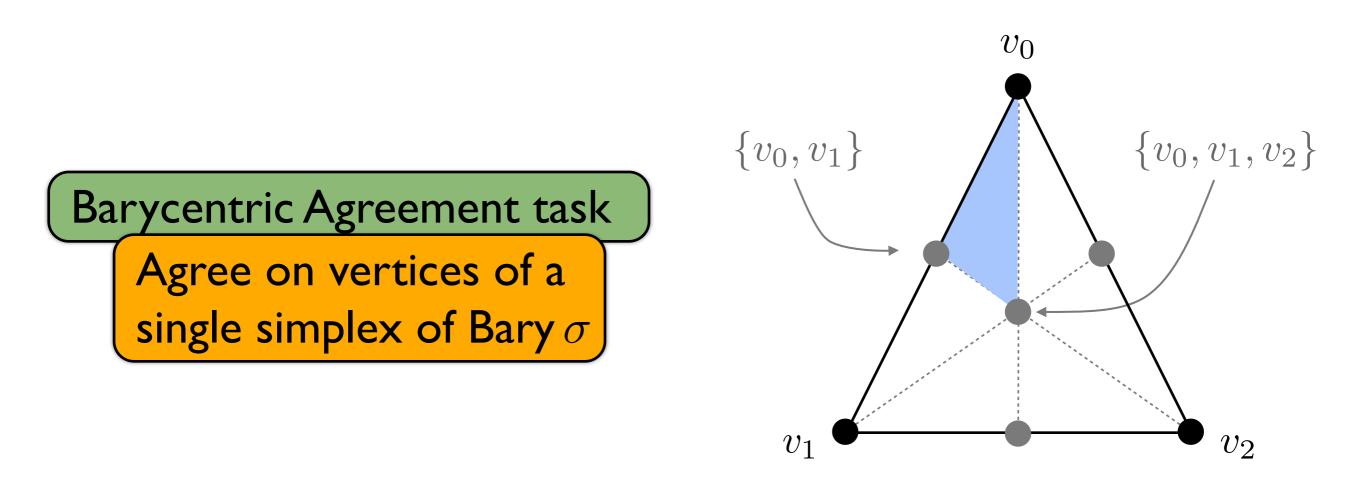






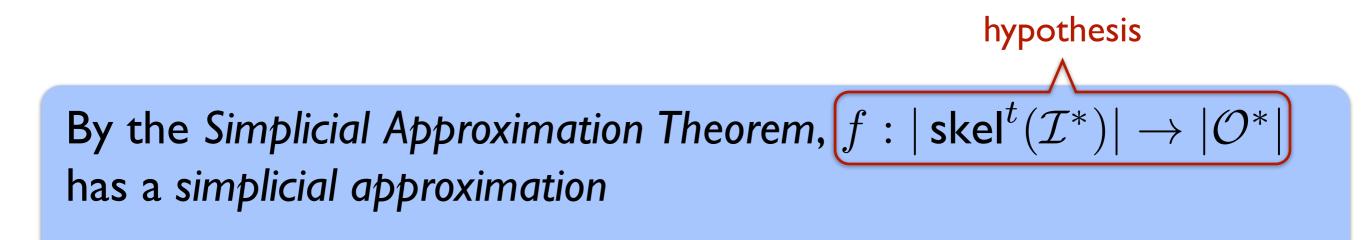


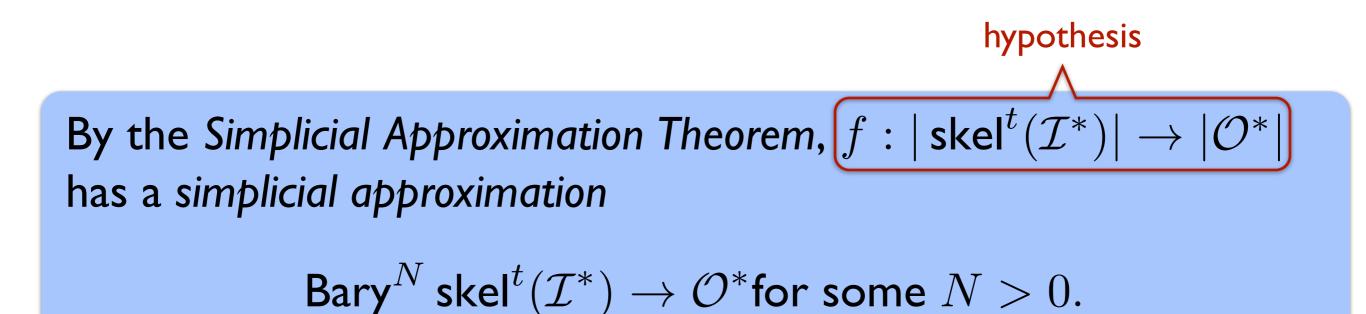
2 Run the Byzantine barycentric agreement protocol N times, landing on a simplex in $\text{Bary}^N \operatorname{skel}^t(\mathcal{I}^*)$.



(protocol based on the ϵ -multidimensional agreement!) [STOC 13]

By the Simplicial Approximation Theorem, $f: |\operatorname{skel}^t(\mathcal{I}^*)| \to |\mathcal{O}^*|$ has a simplicial approximation



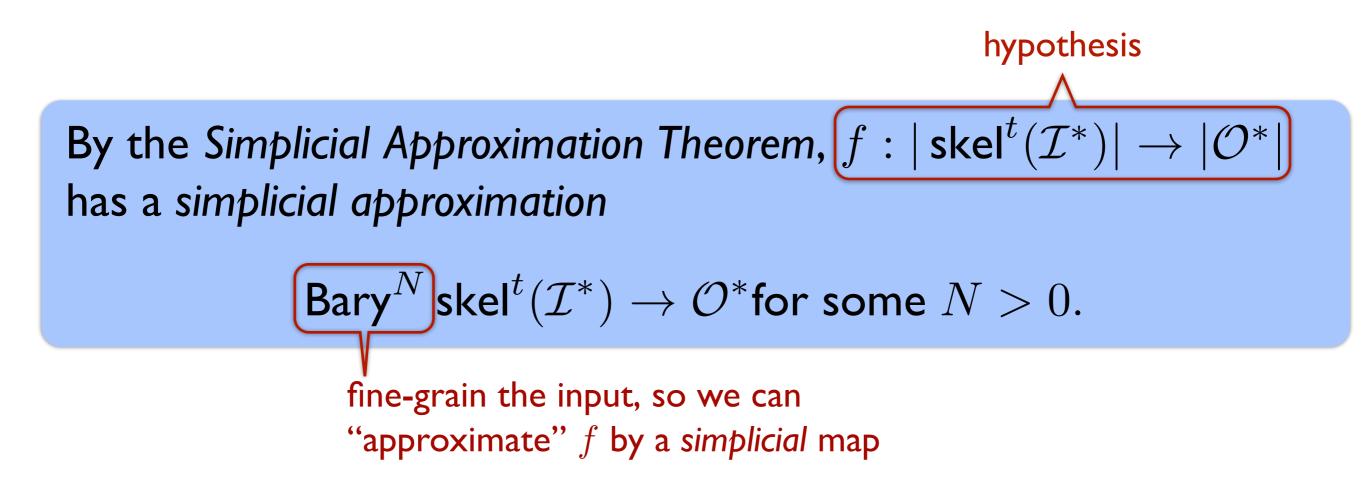


hypothesis

By the Simplicial Approximation Theorem, $f:|\operatorname{skel}^t(\mathcal{I}^*)| \to |\mathcal{O}^*|$ has a simplicial approximation

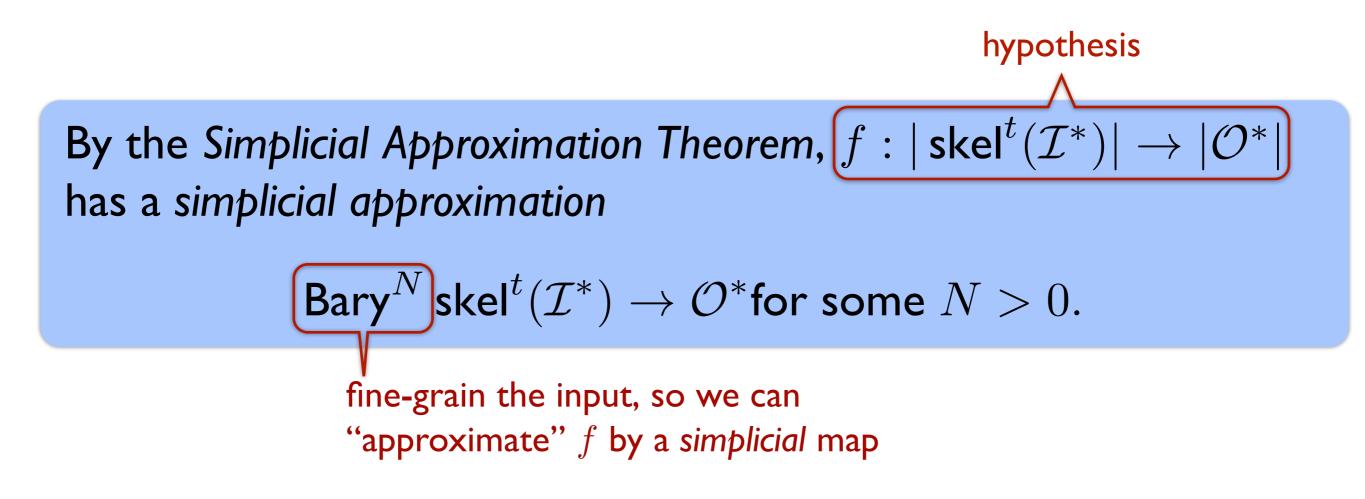
Bary^N skel^t(
$$\mathcal{I}^*$$
) $\rightarrow \mathcal{O}^*$ for some $N > 0$.

fine-grain the input, so we can "approximate" f by a simplicial map



We then...

3 Apply ϕ : Bary^N skel^t(\mathcal{I}^*) $\rightarrow \mathcal{O}^*$ to choose vertices in \mathcal{O}^* .



We then...

3 Apply ϕ : Bary^N skel^t(\mathcal{I}^*) $\rightarrow \mathcal{O}^*$ to choose vertices in \mathcal{O}^* .

(because it's a simplicial approximation, choosing outputs based on the approximation is consistent with choosing outputs based on f)

I. Introduction

2. Asynchronous Byzantine Systems

- 3. Synchronous Byzantine Systems
- 4. Conclusion & Future Work

- I. Introduction
- 2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

I. Introduction

2. Asynchronous Byzantine Systems

3.) Synchronous Byzantine Systems quick overview

4. Conclusion & Future Work

Before

Tasks modeled as simplicial complexes

Before

Tasks modeled as simplicial complexes

Now

Before

Tasks modeled as simplicial complexes

Now

Executions also modeled as simplicial complexes

Before

Tasks modeled as simplicial complexes

Now

Executions also modeled as simplicial complexes

Global state evolving throughout the rounds

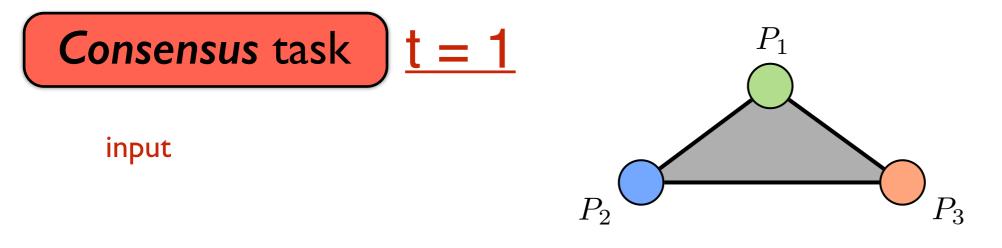
Before

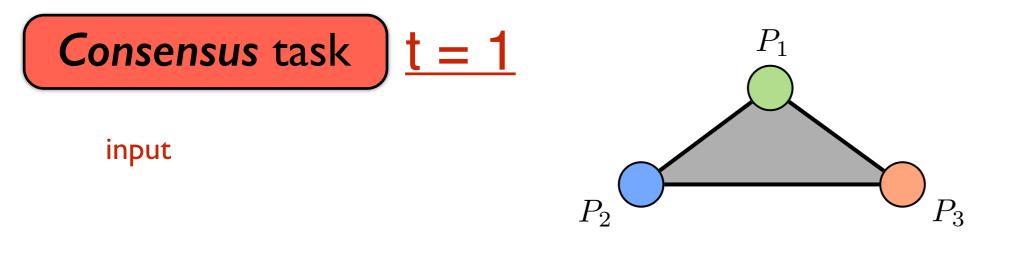
Tasks modeled as simplicial complexes

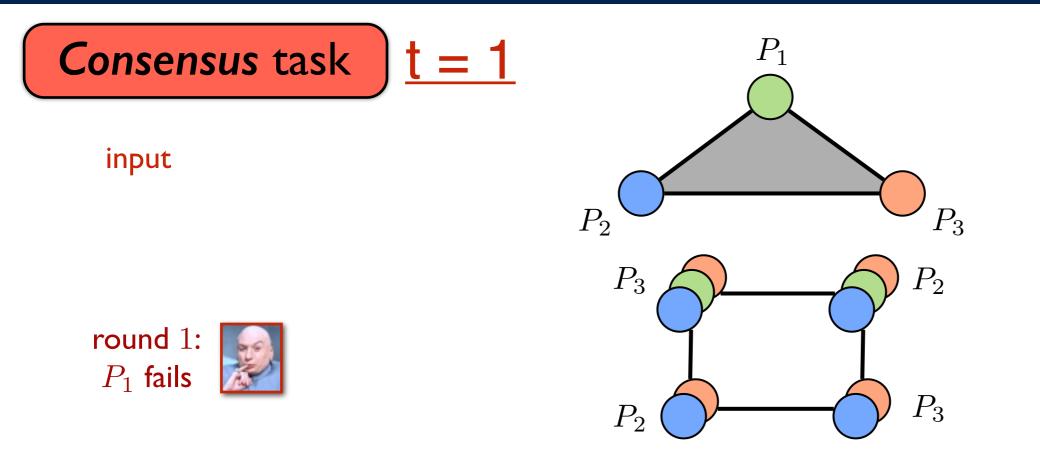
Now

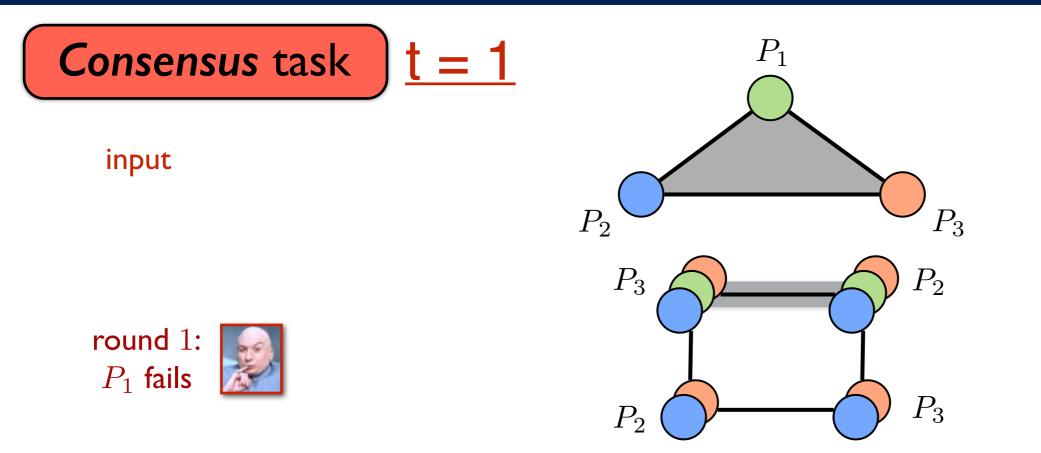
Executions also modeled as simplicial complexes

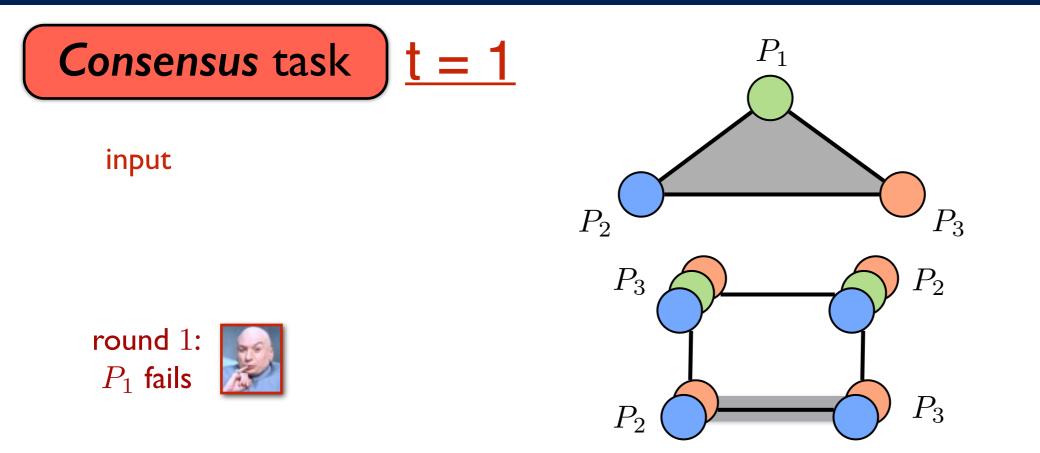
Global state evolving throughout the rounds

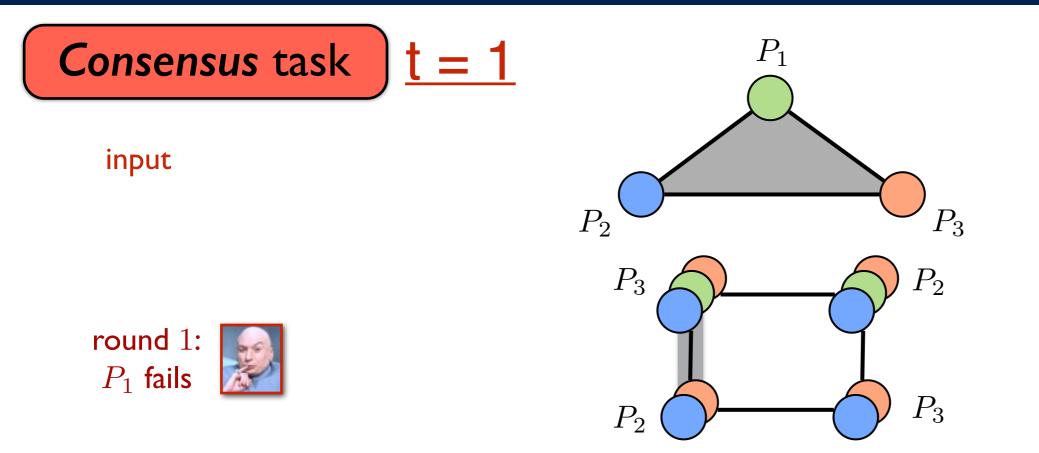


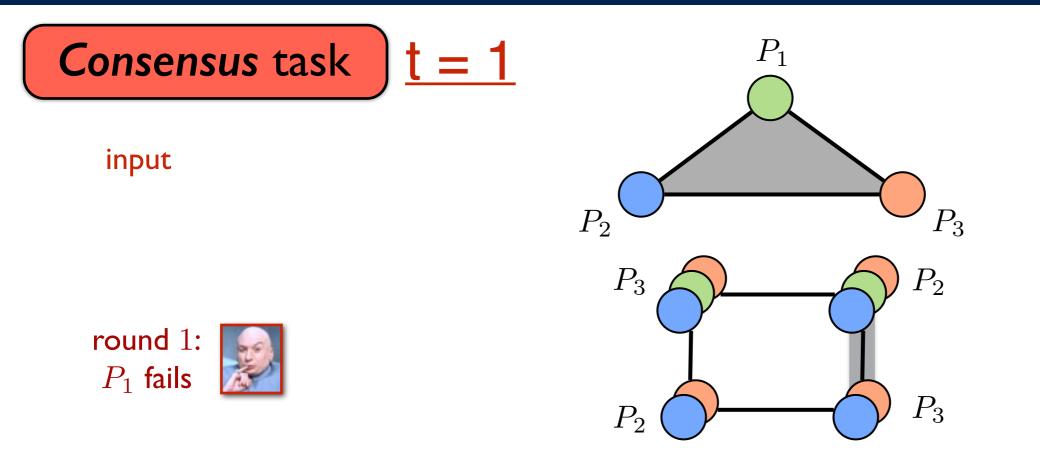


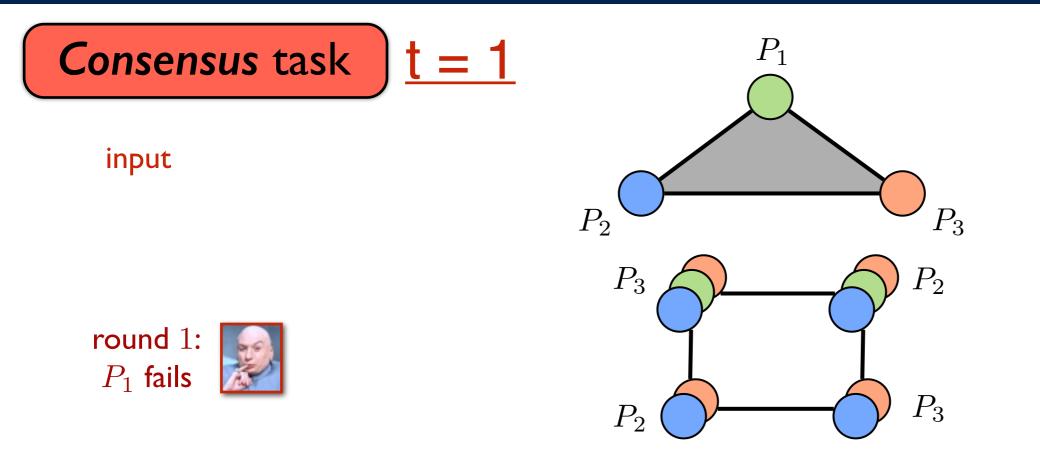


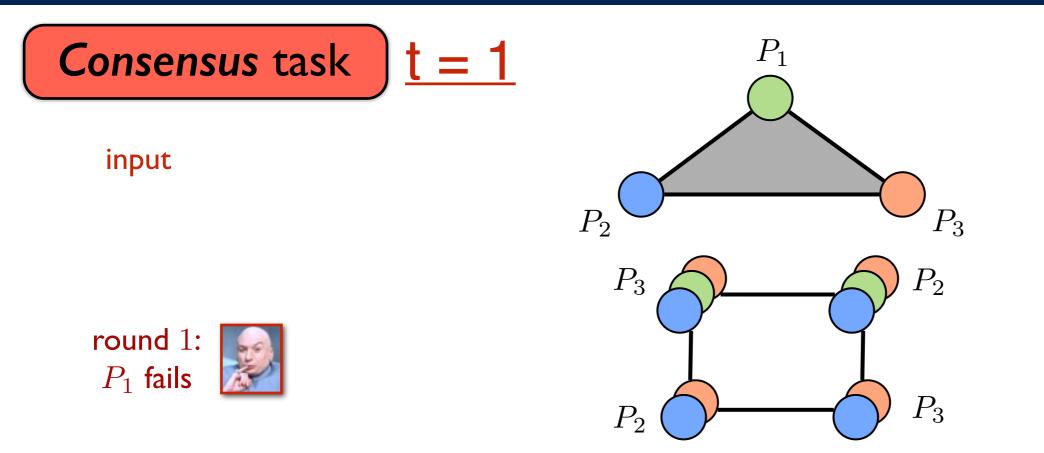


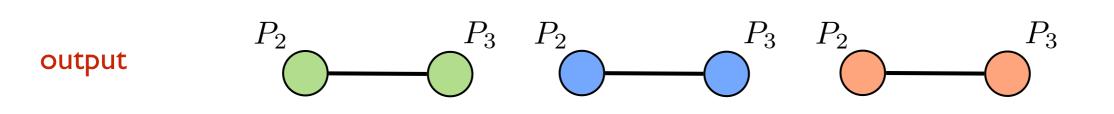


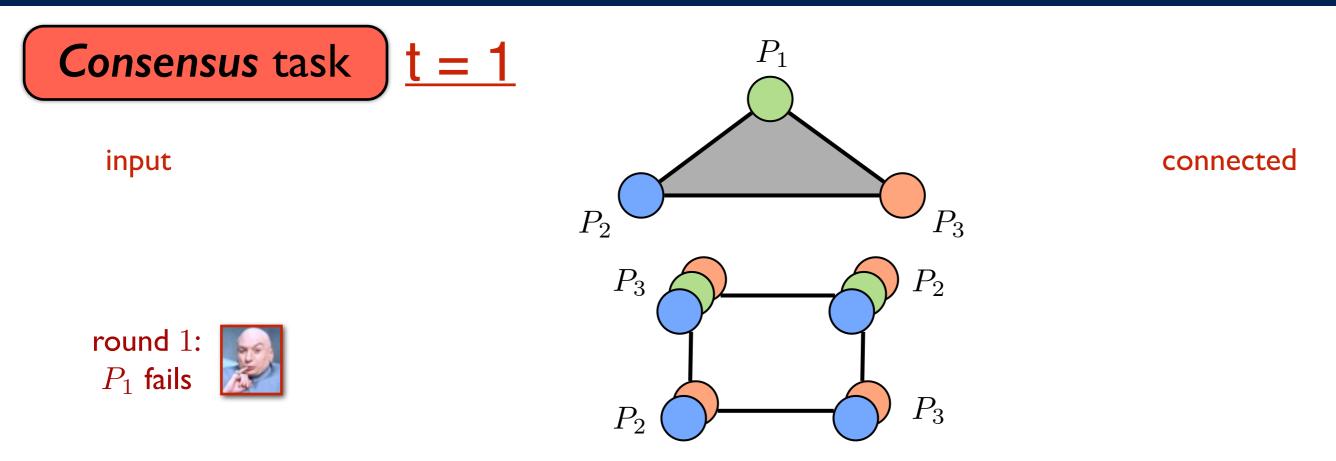


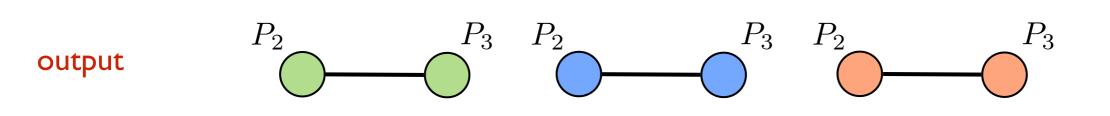


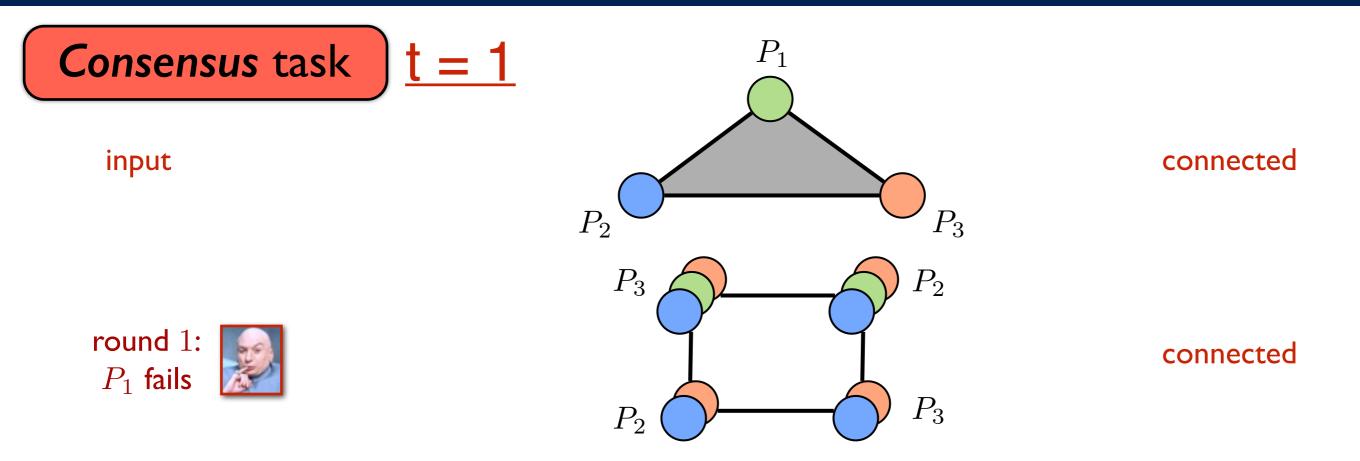


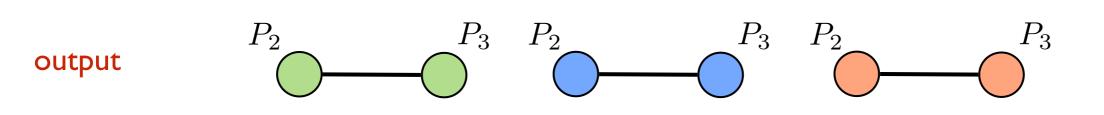


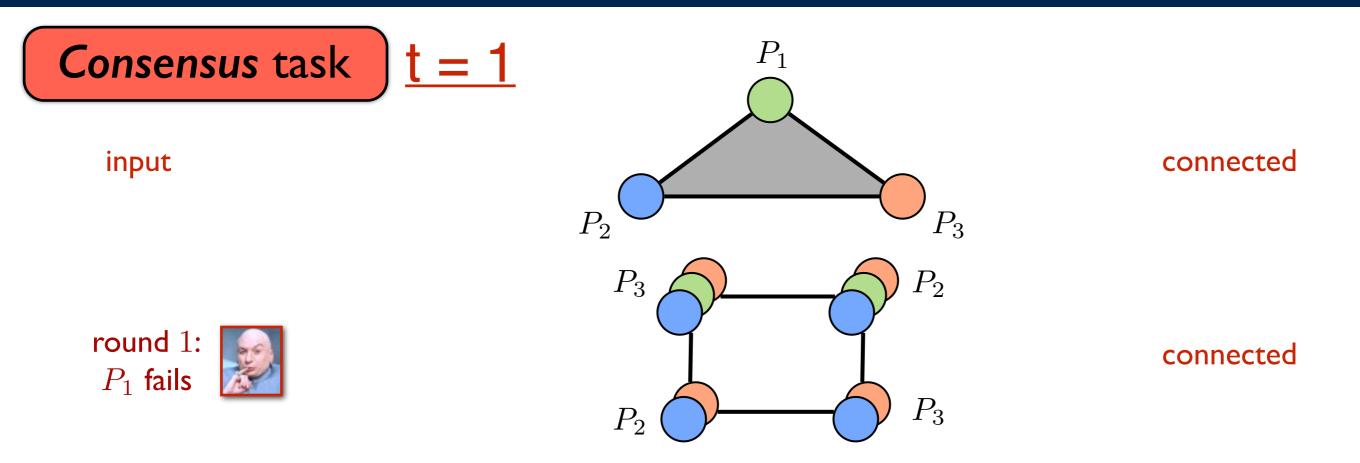


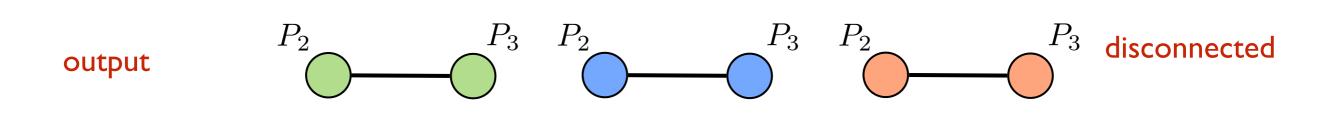


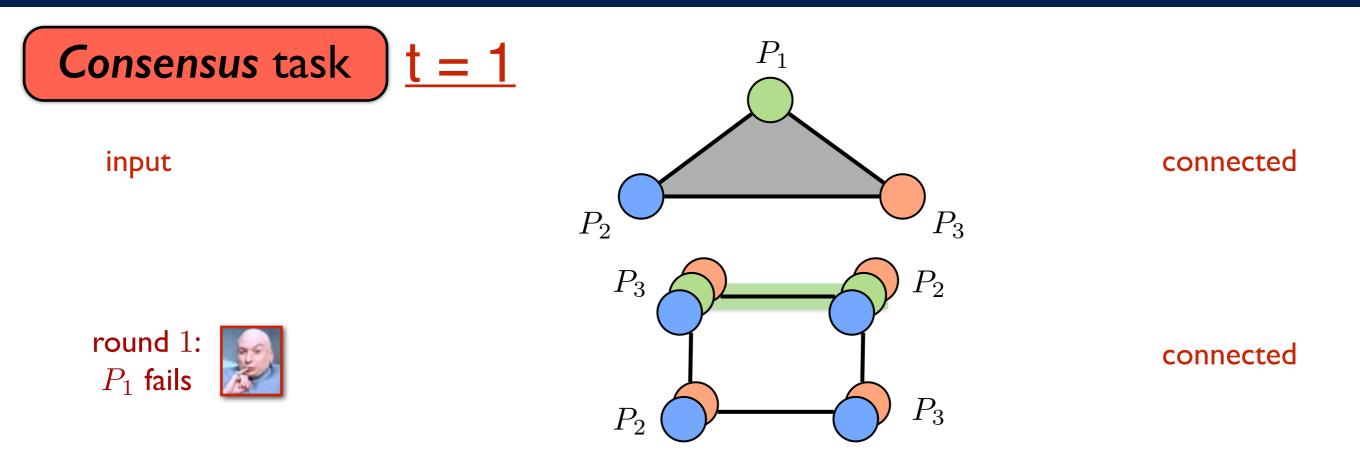


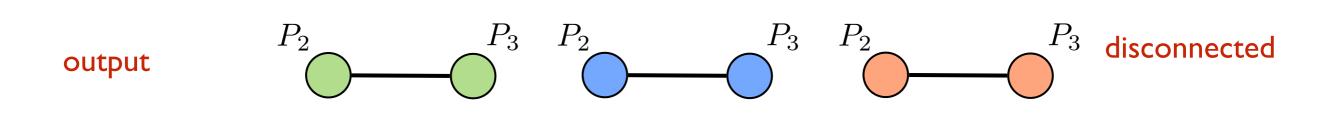


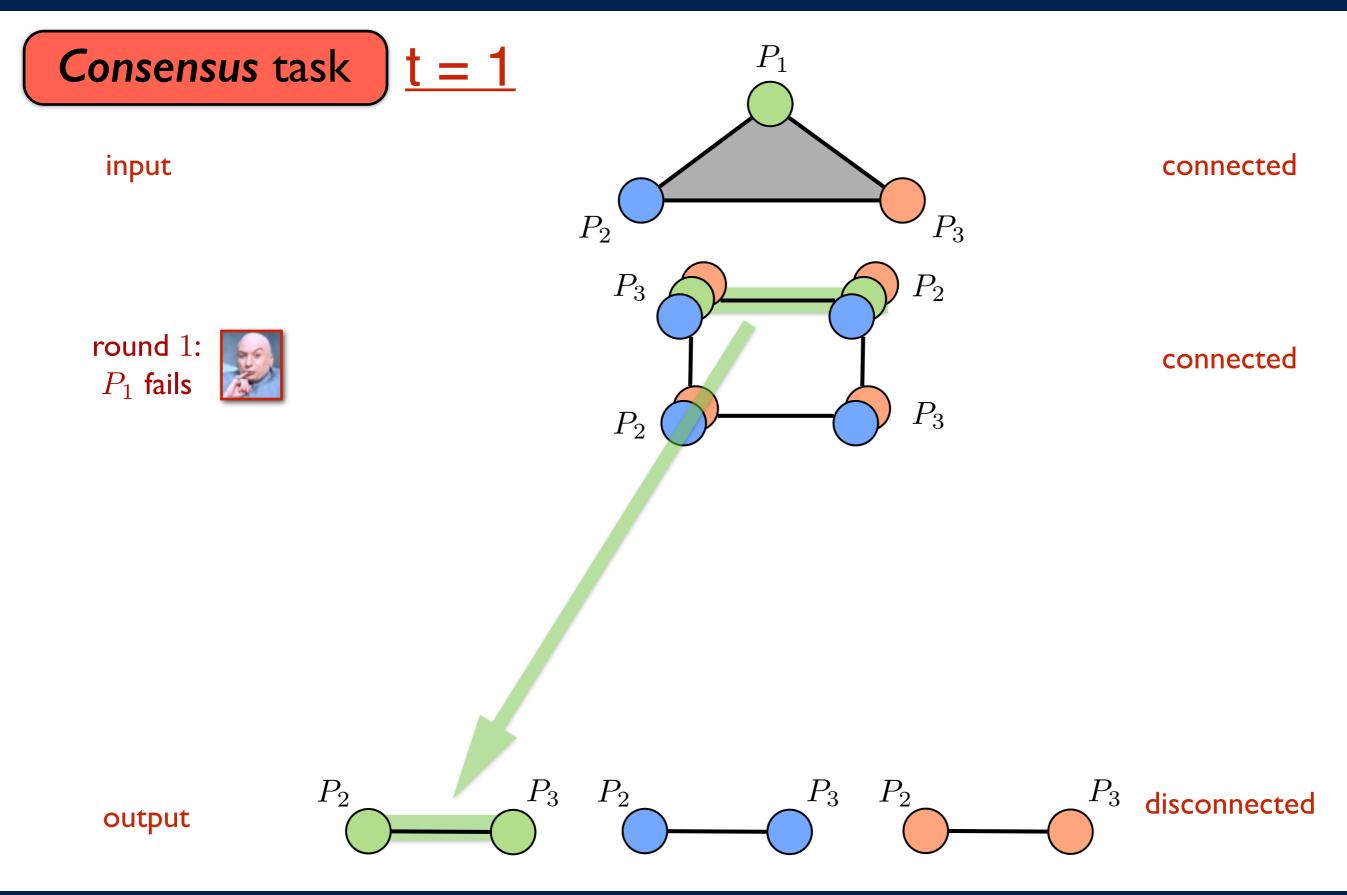


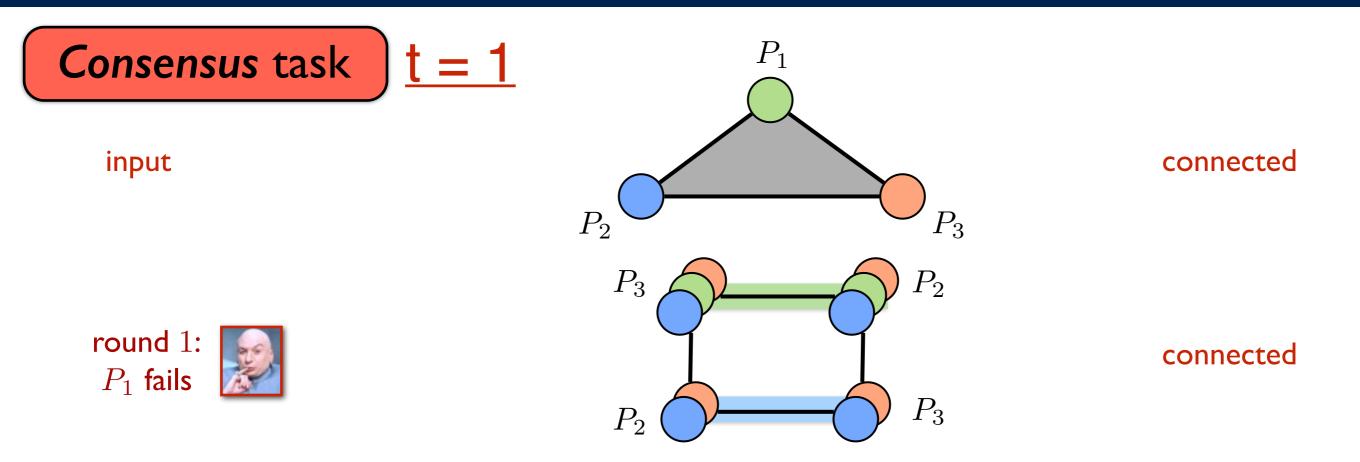


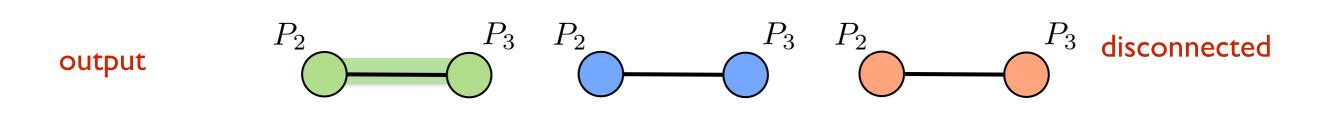


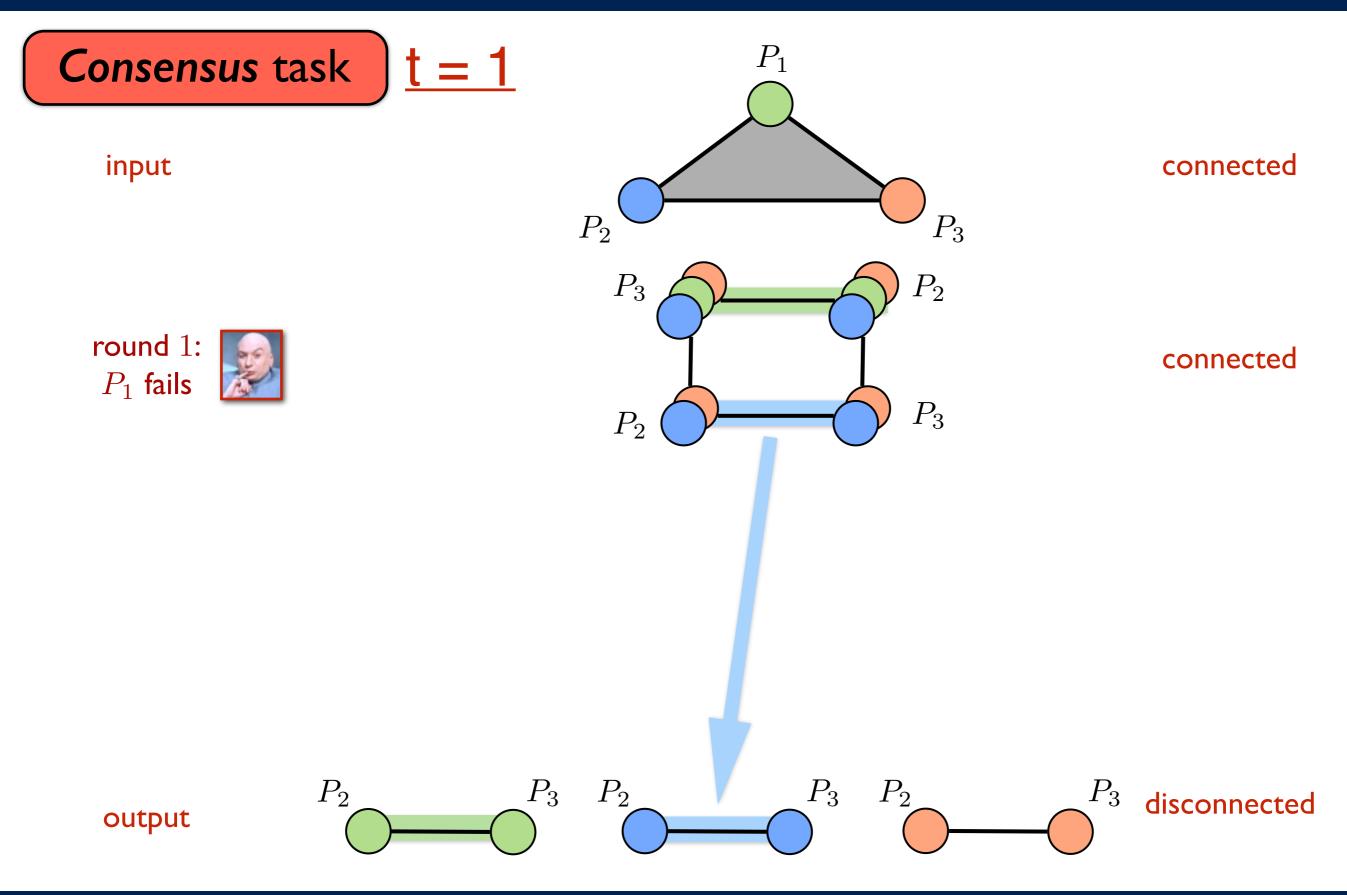




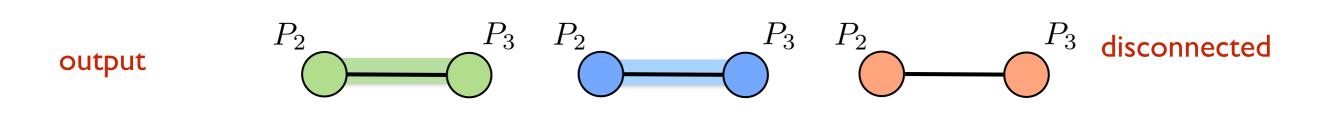


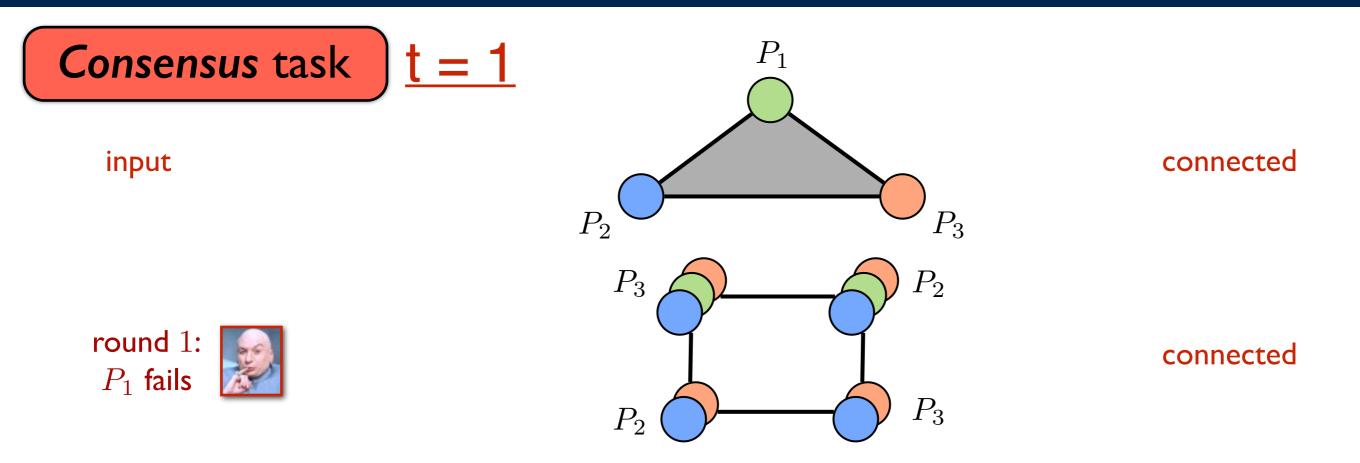


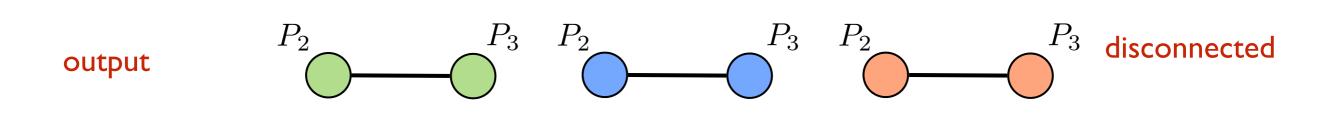


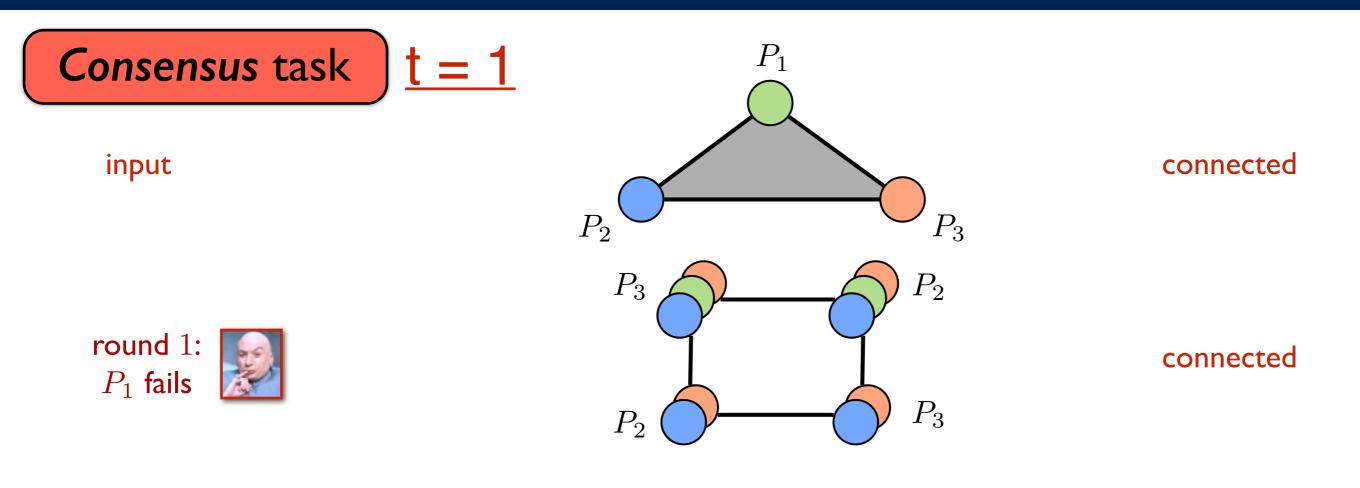


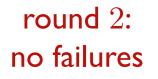


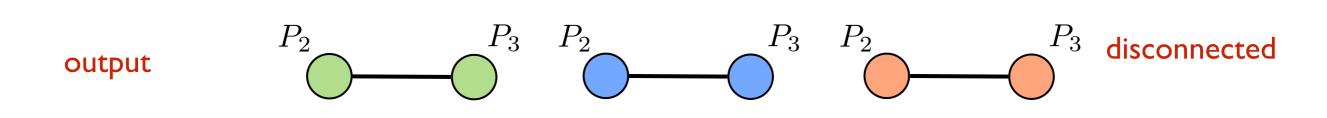


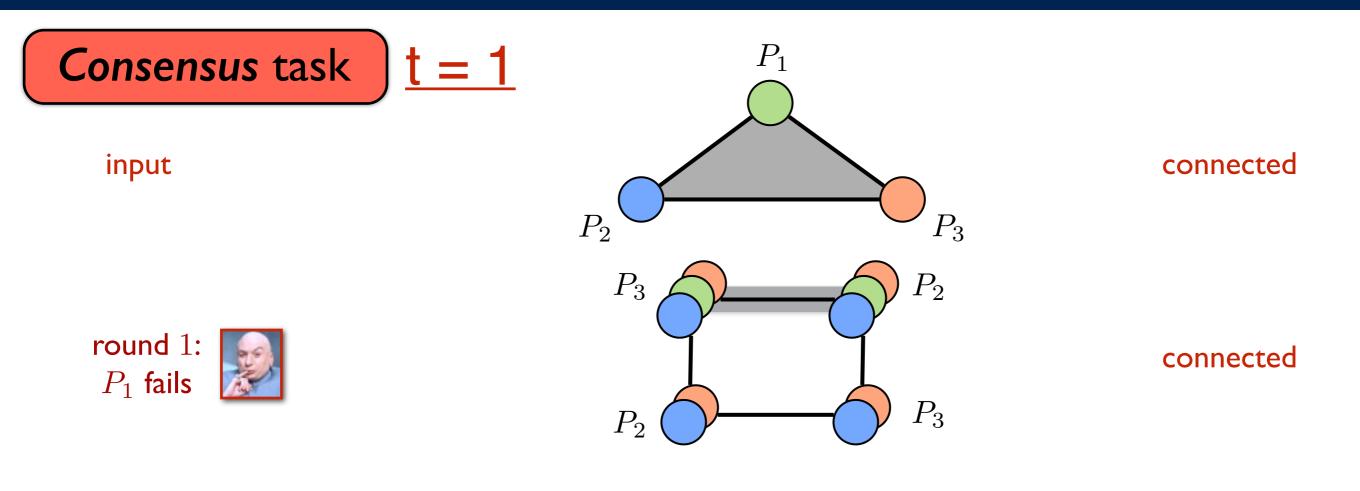


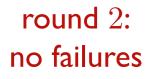


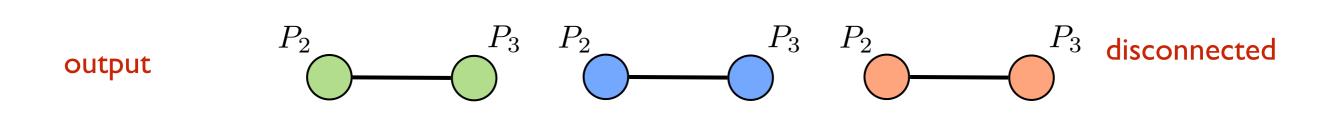


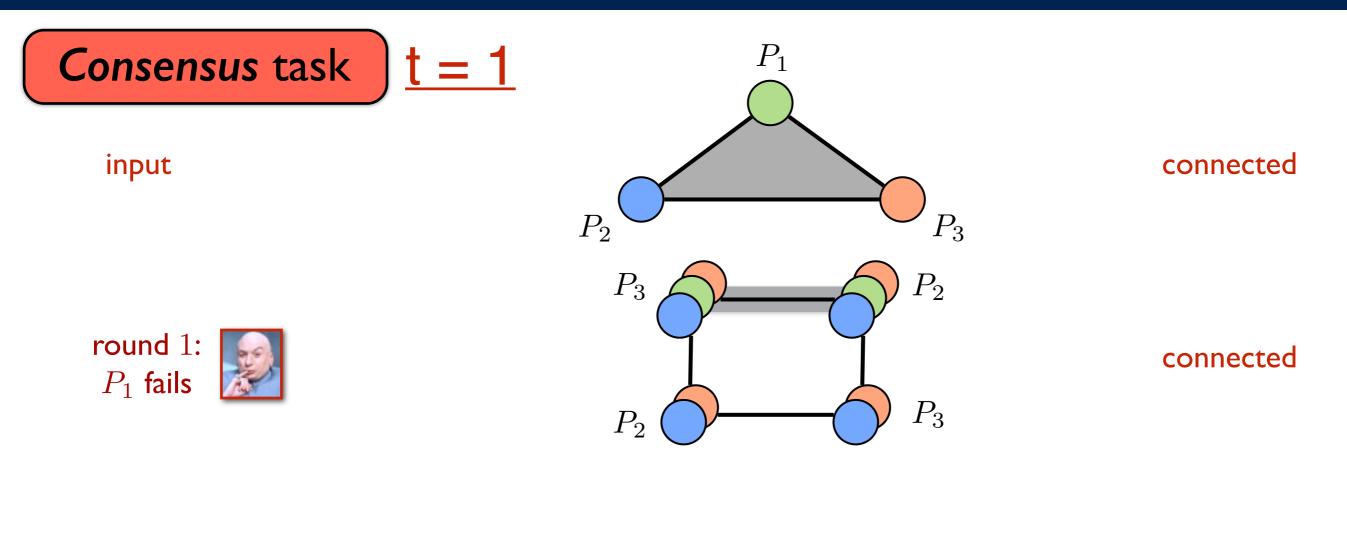


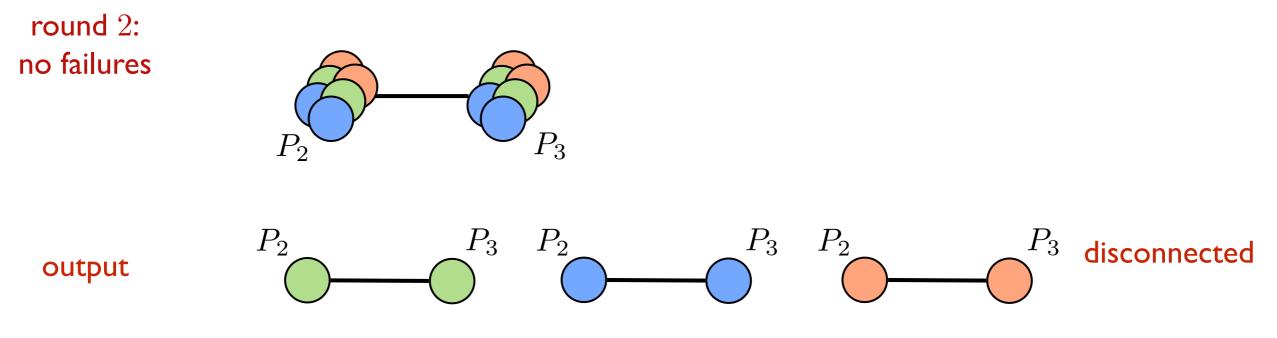


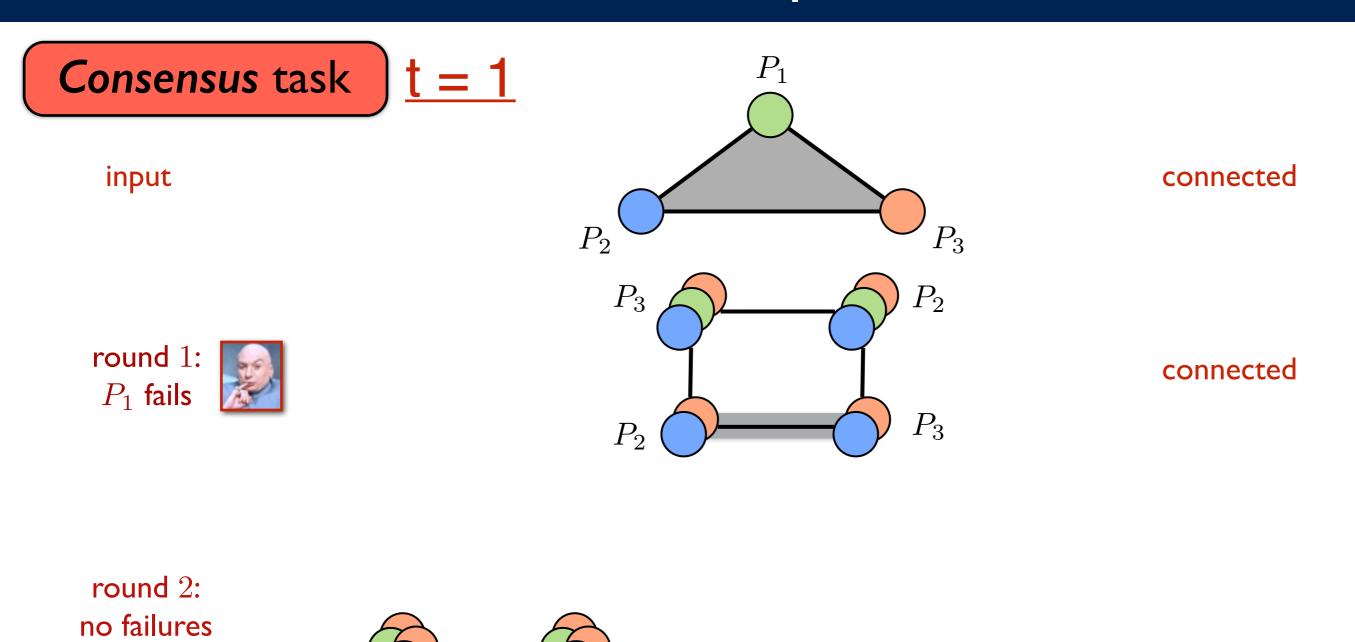


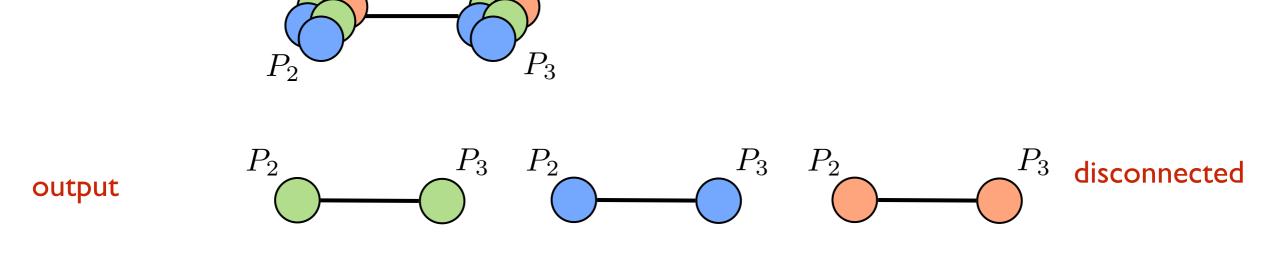


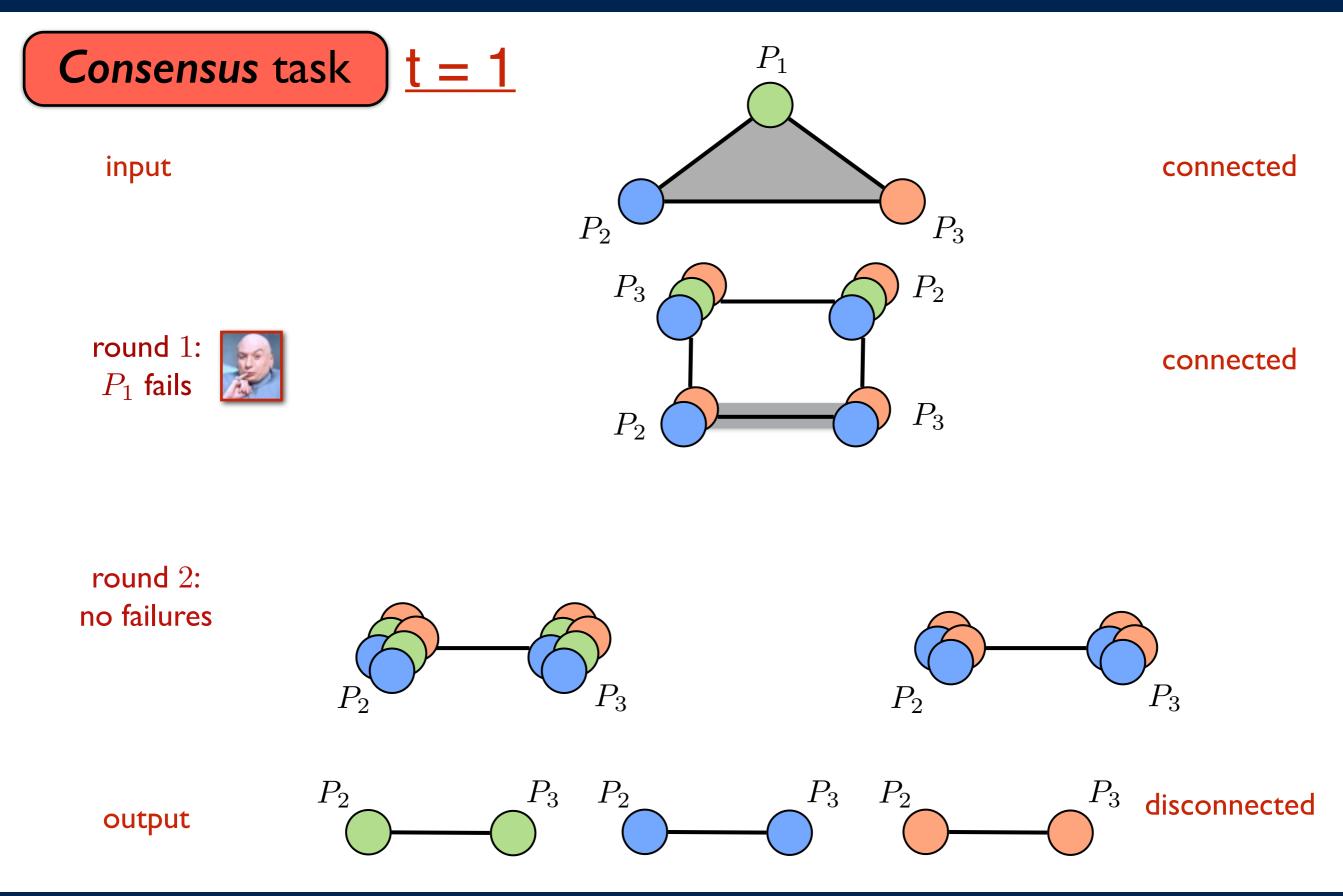


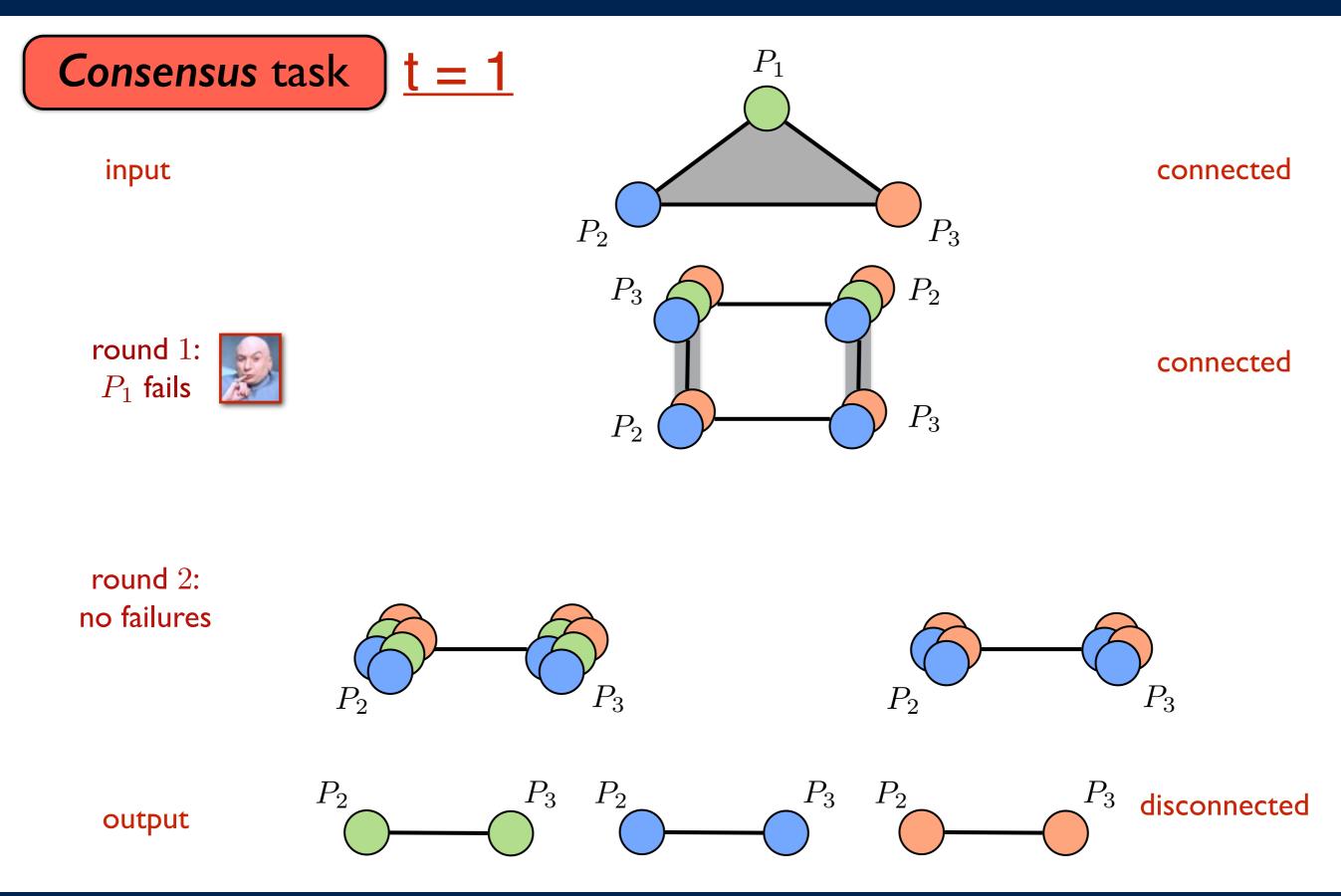


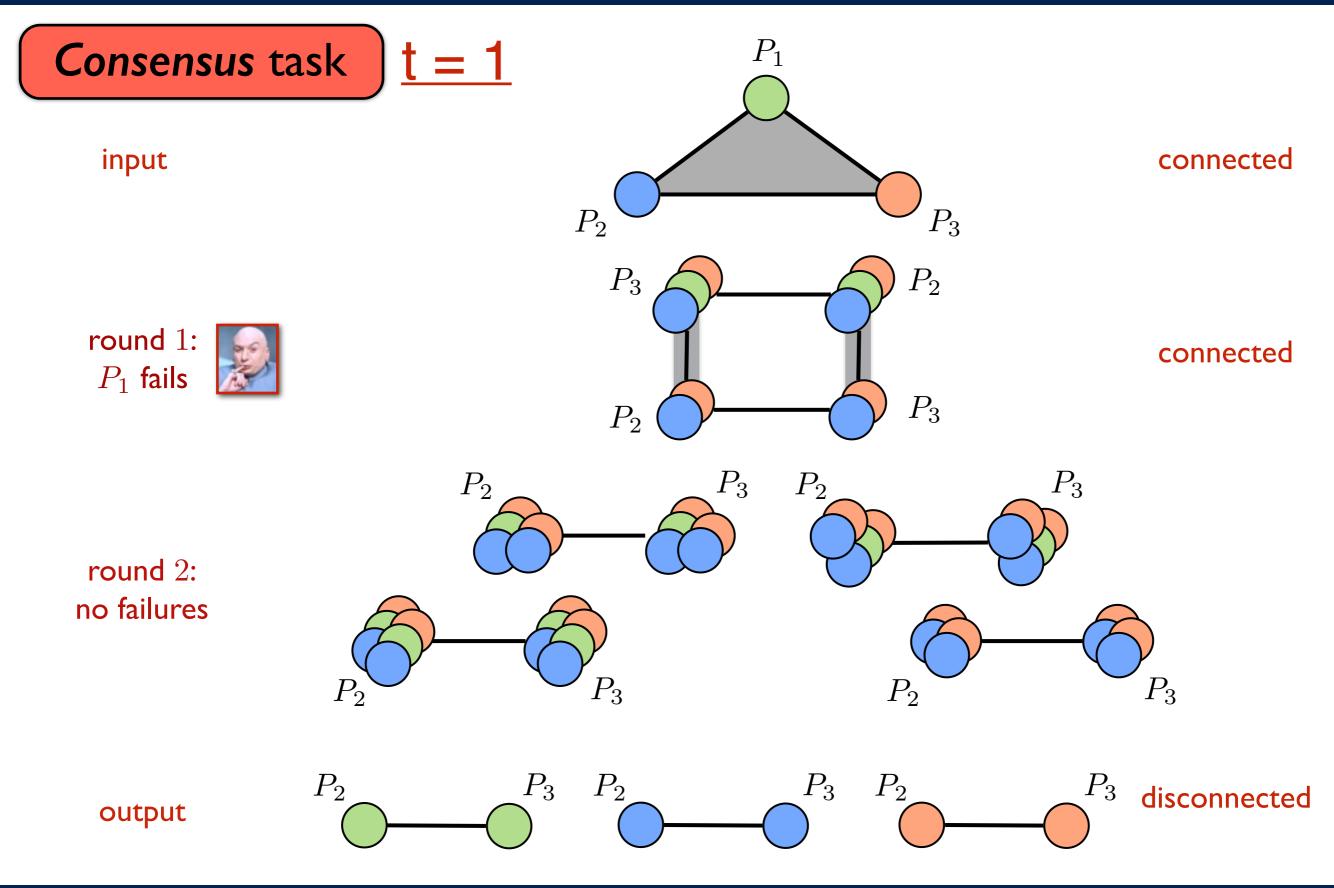


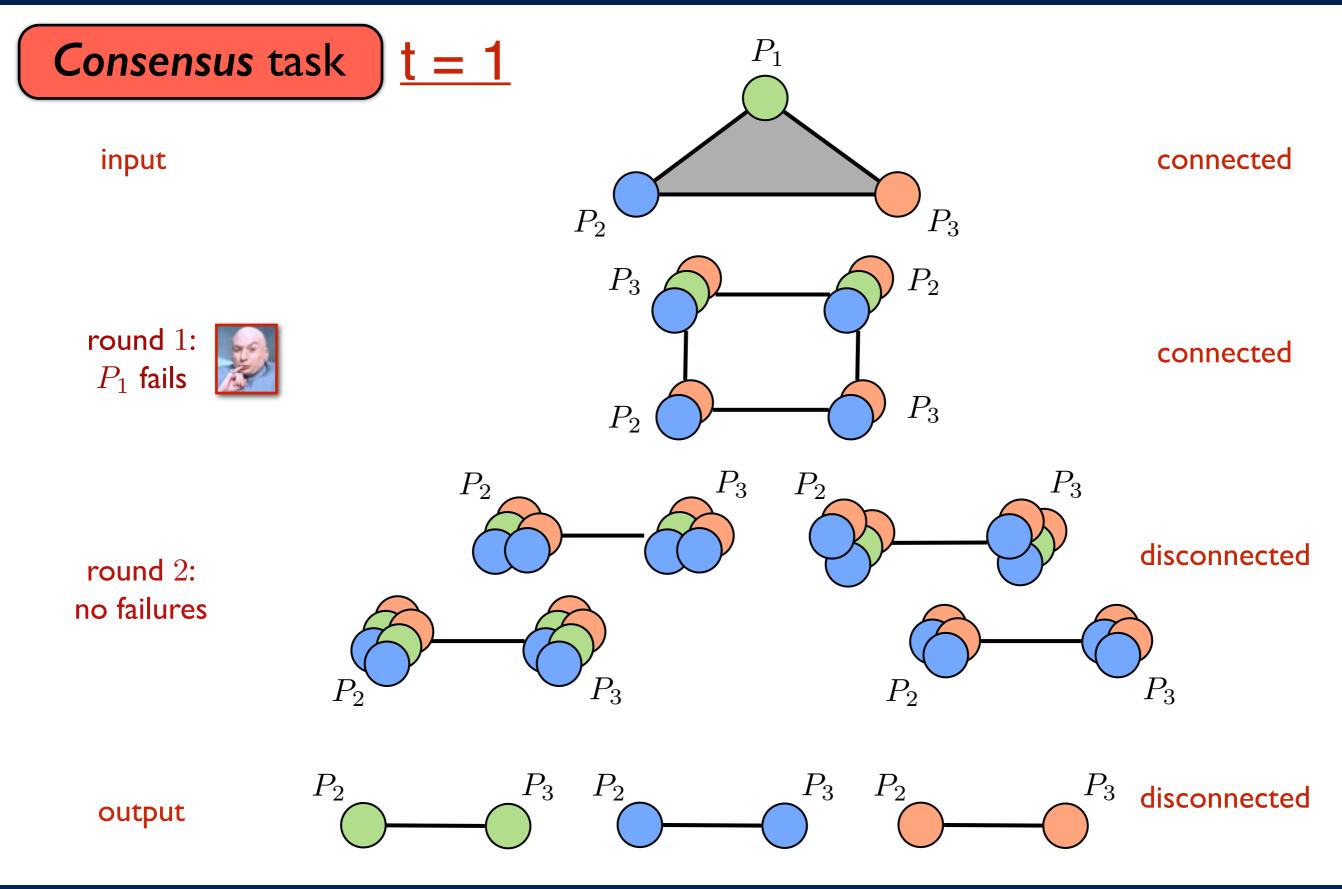


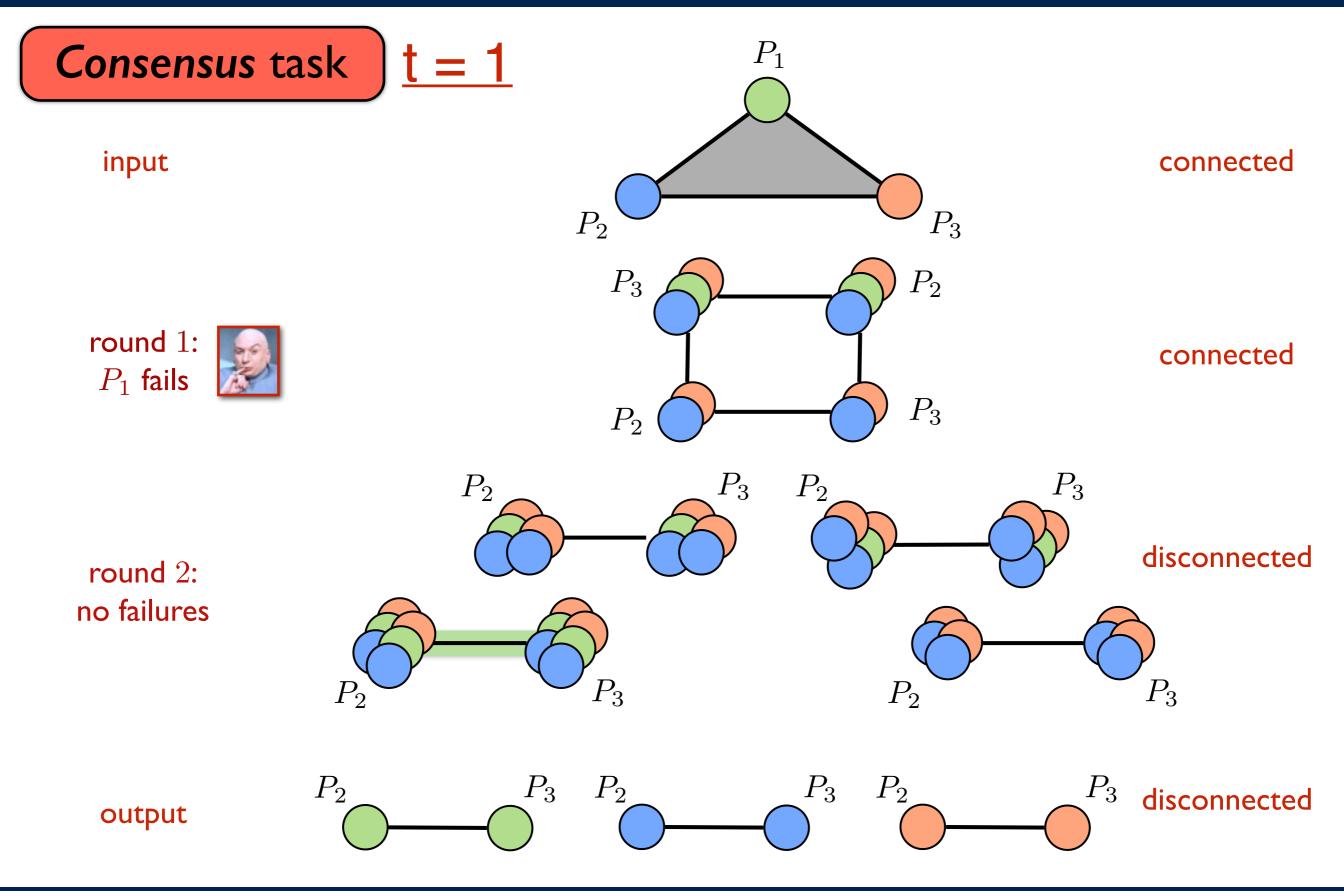


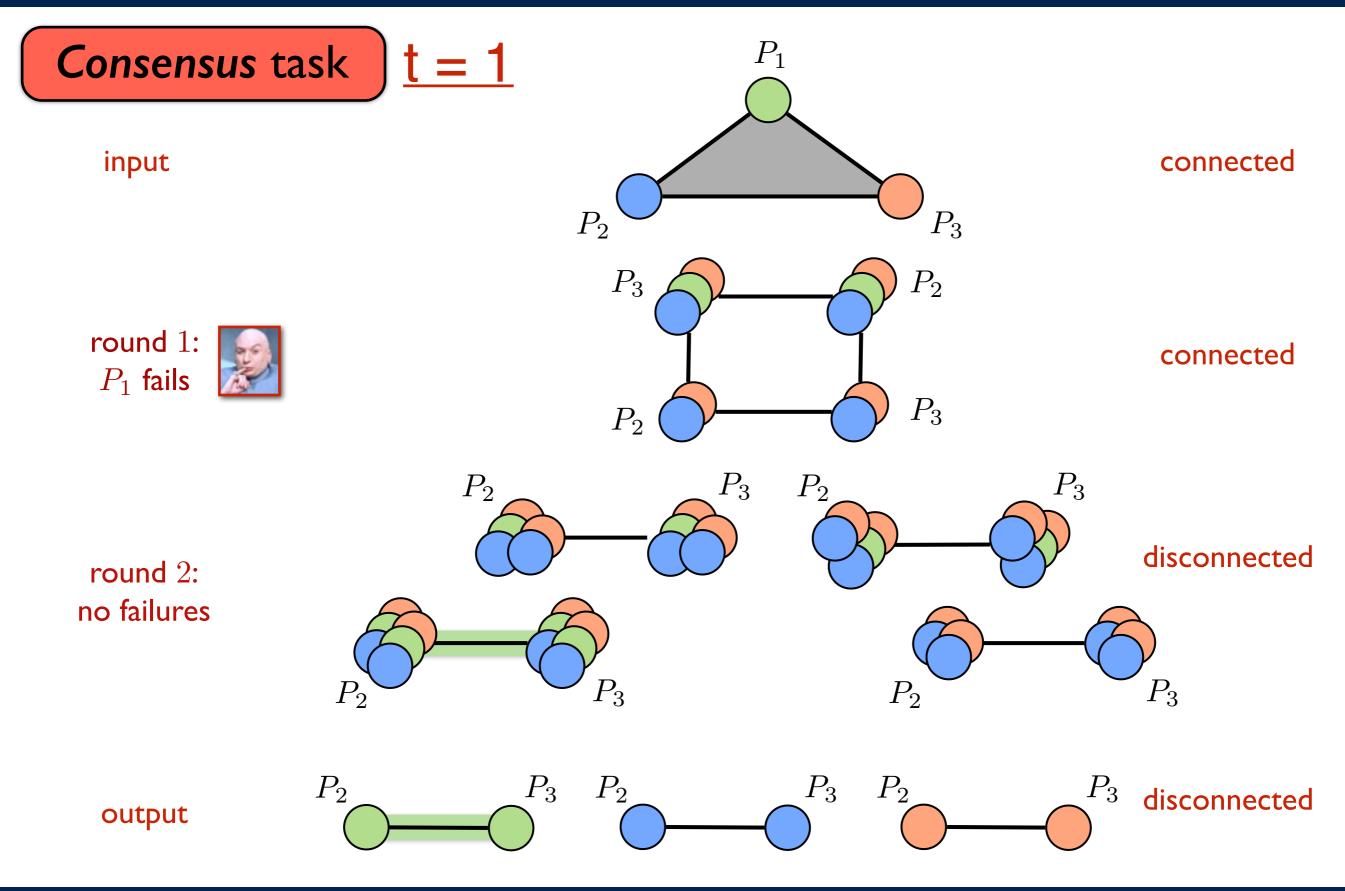


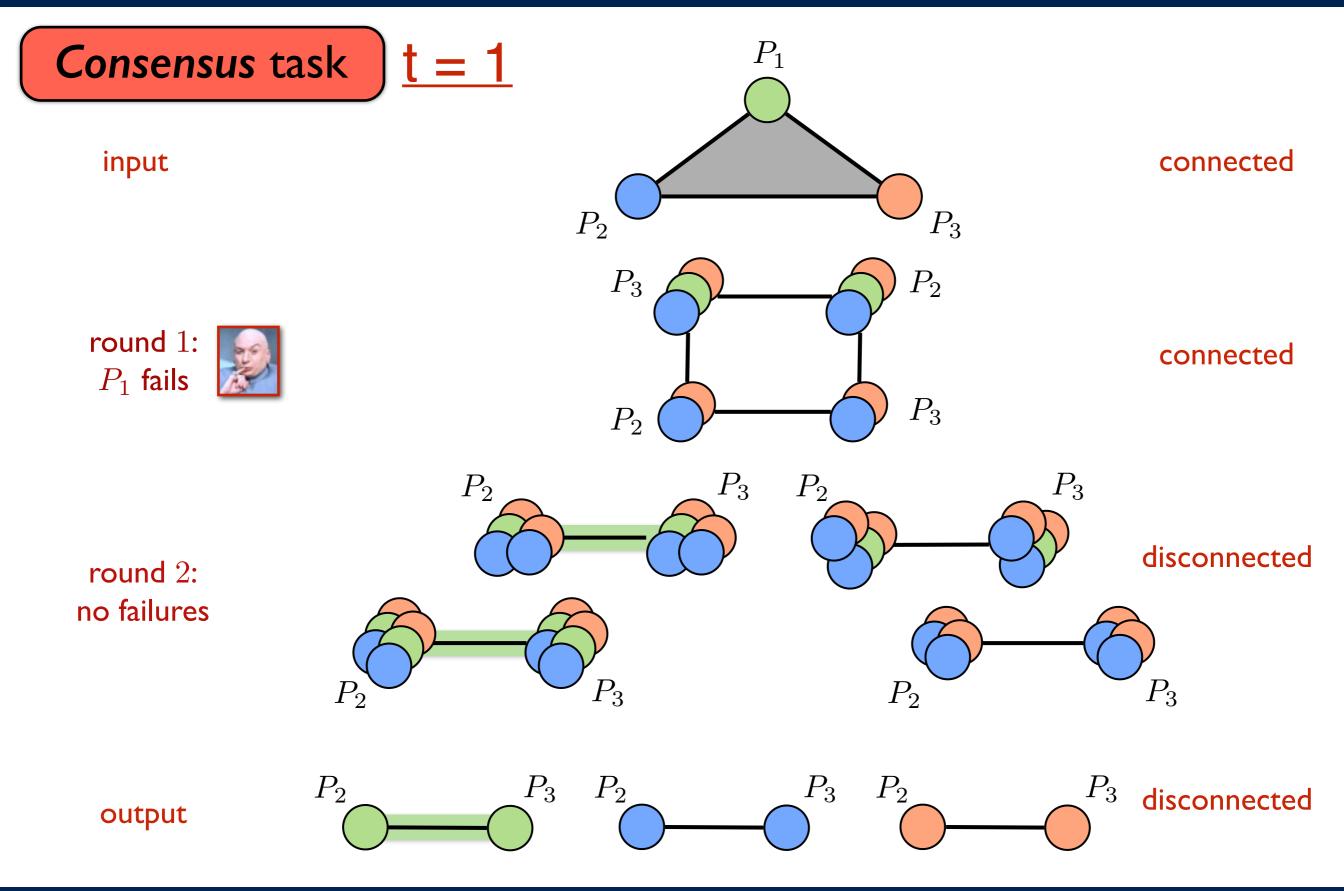


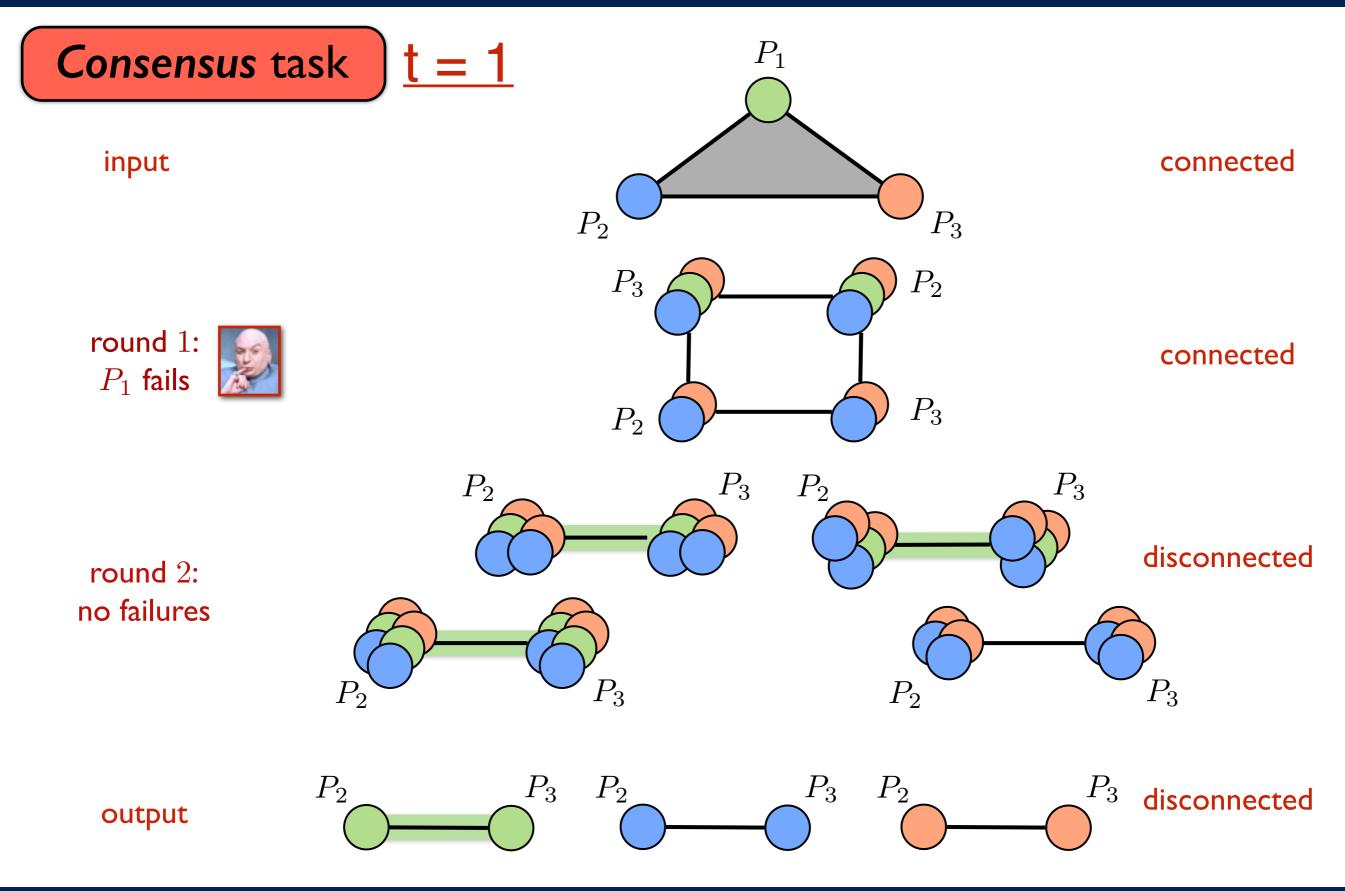


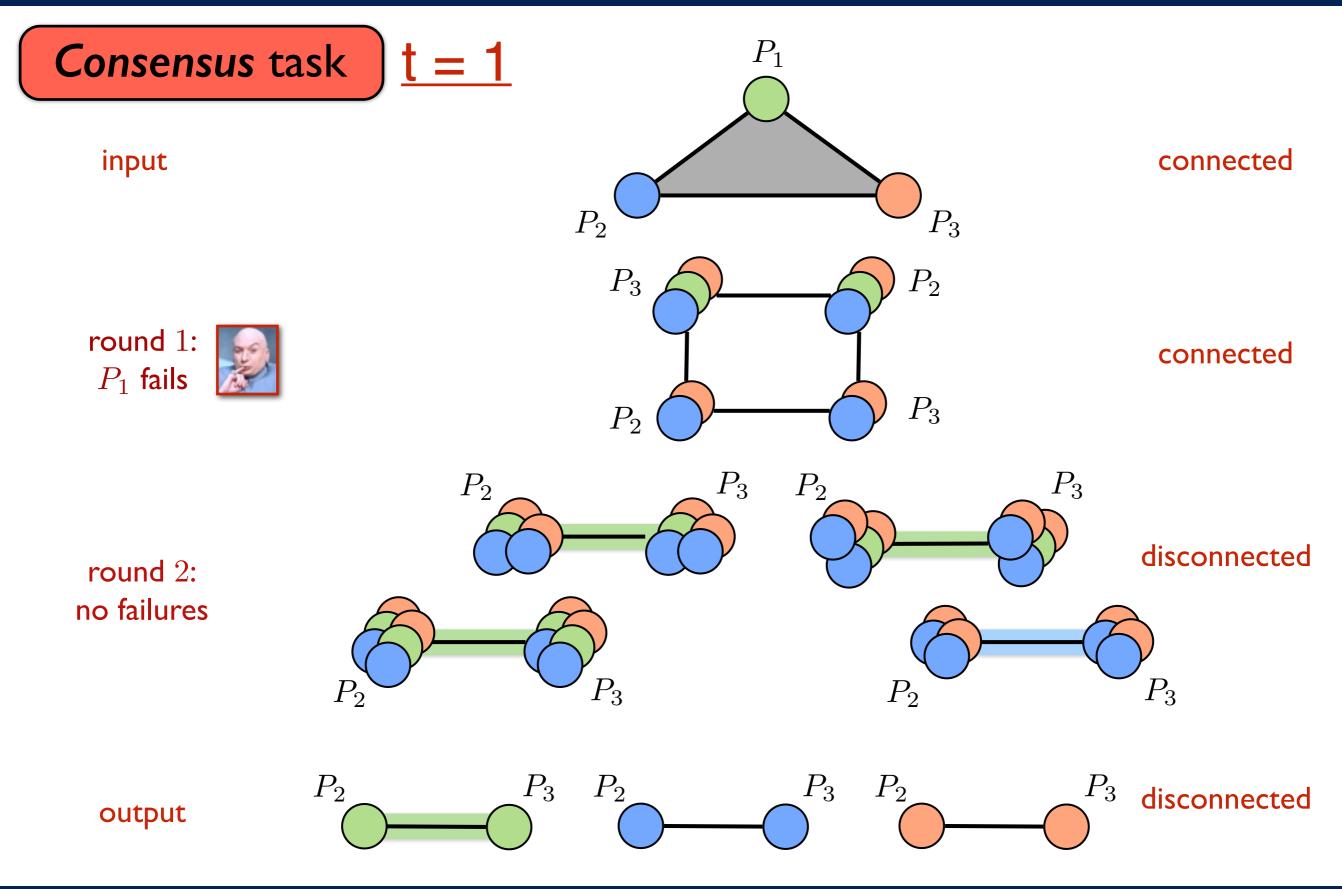


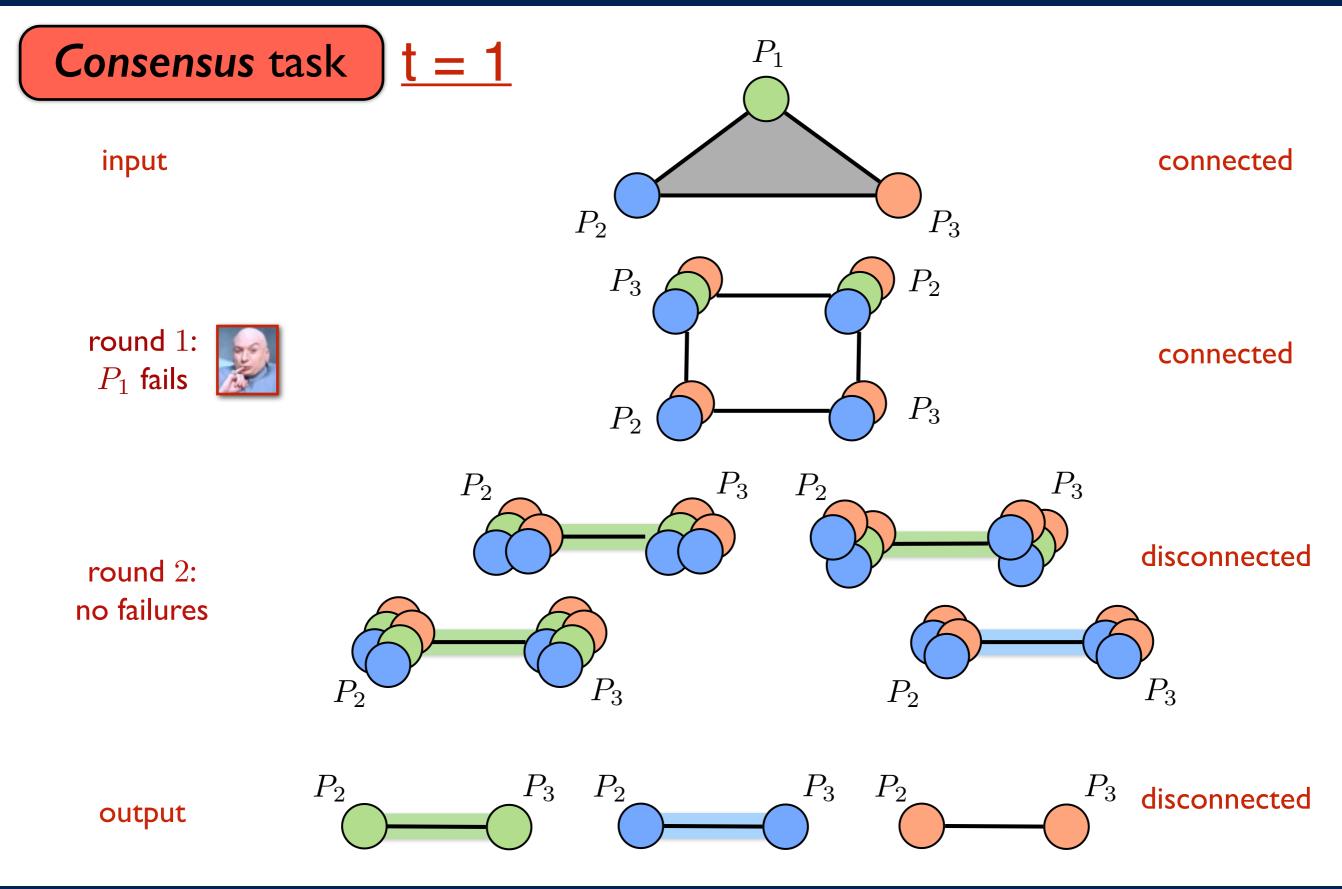








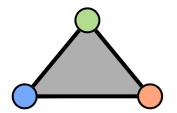




Herlihy & Rajsbaum 2000

Herlihy & Rajsbaum 2000

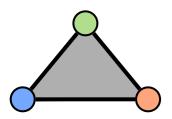
 $\mathcal{K}_0 = \mathcal{I}^*$



Herlihy & Rajsbaum 2000

adversarial execution

 $\mathcal{K}_0 = \mathcal{I}^*$



Herlihy & Rajsbaum 2000

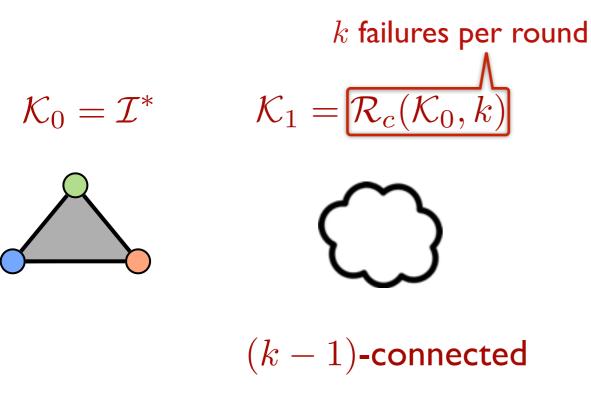
adversarial execution

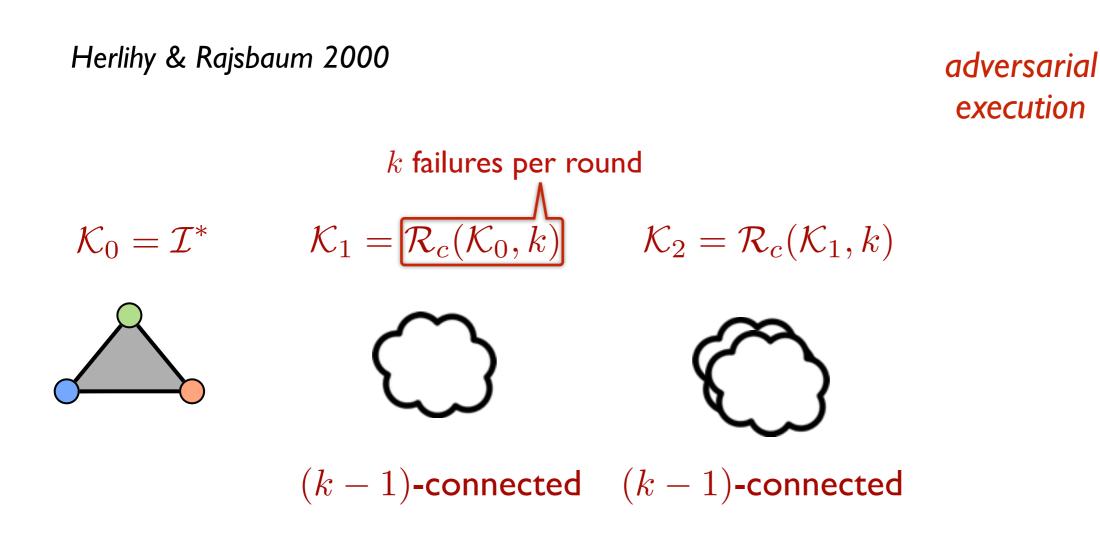
$$\mathcal{K}_0 = \mathcal{I}^* \qquad \qquad \mathcal{K}_1 = \mathcal{R}_c(\mathcal{K}_0, k)$$

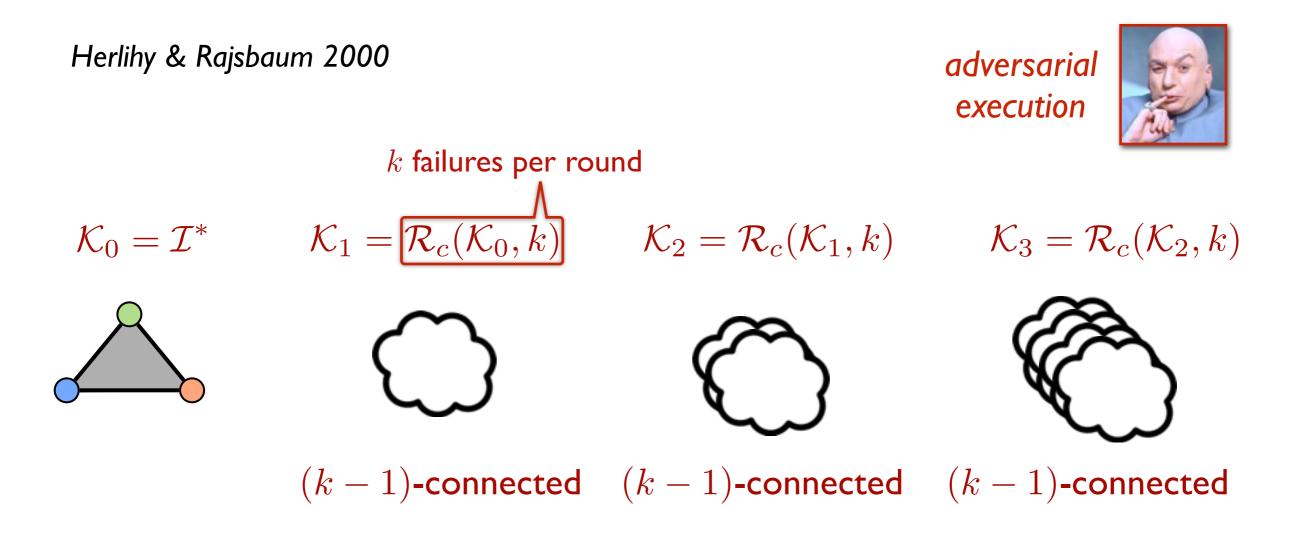
(k-1)-connected

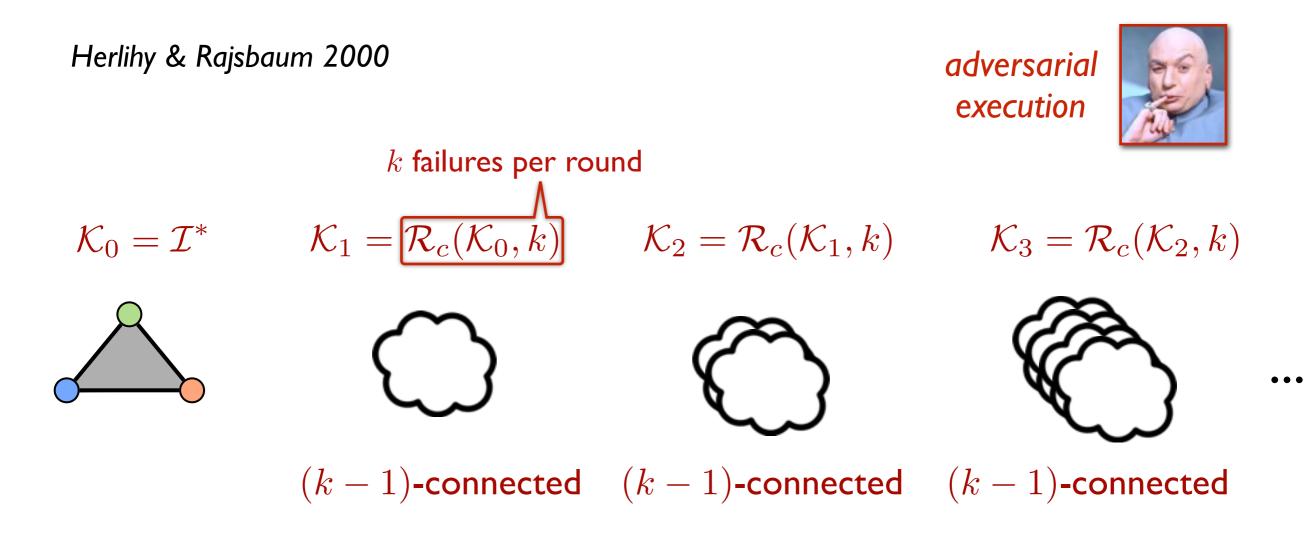
Herlihy & Rajsbaum 2000

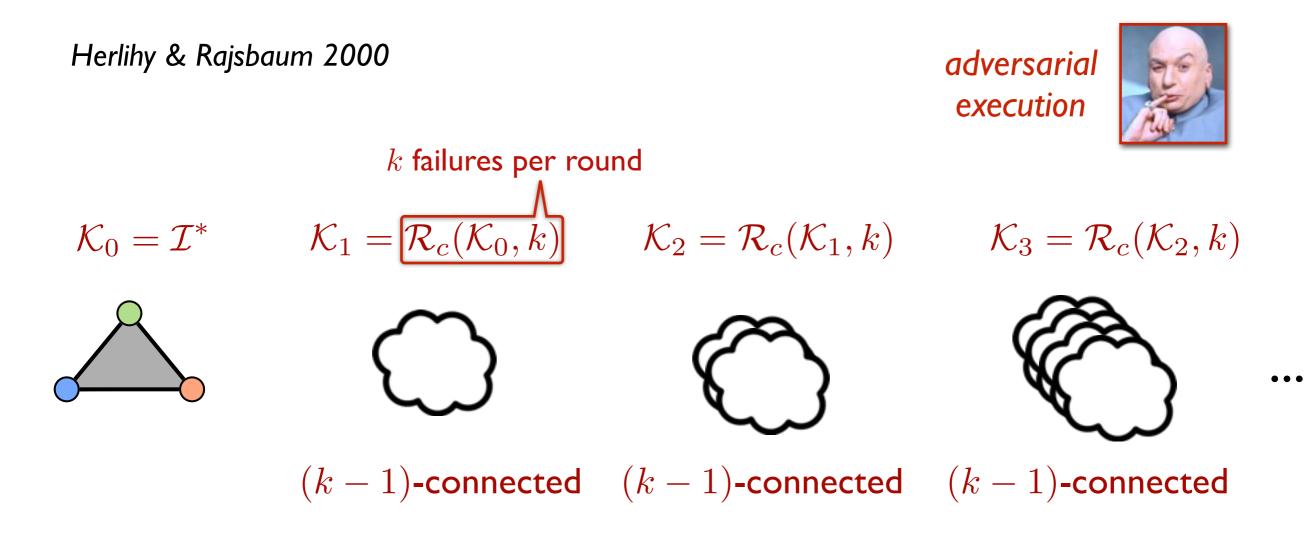
adversarial execution





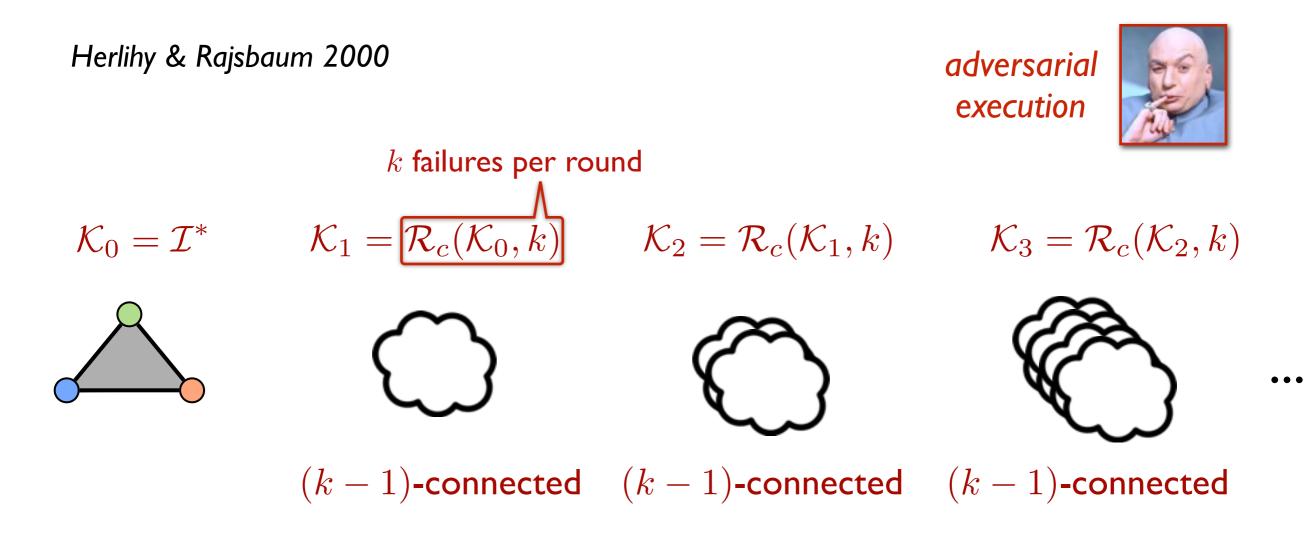


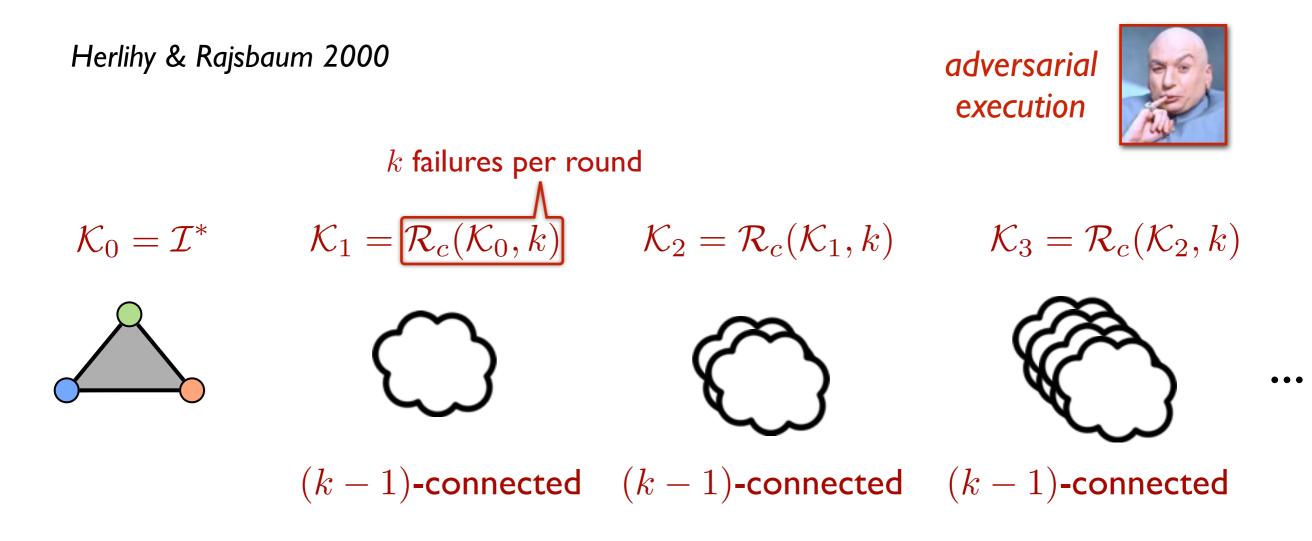




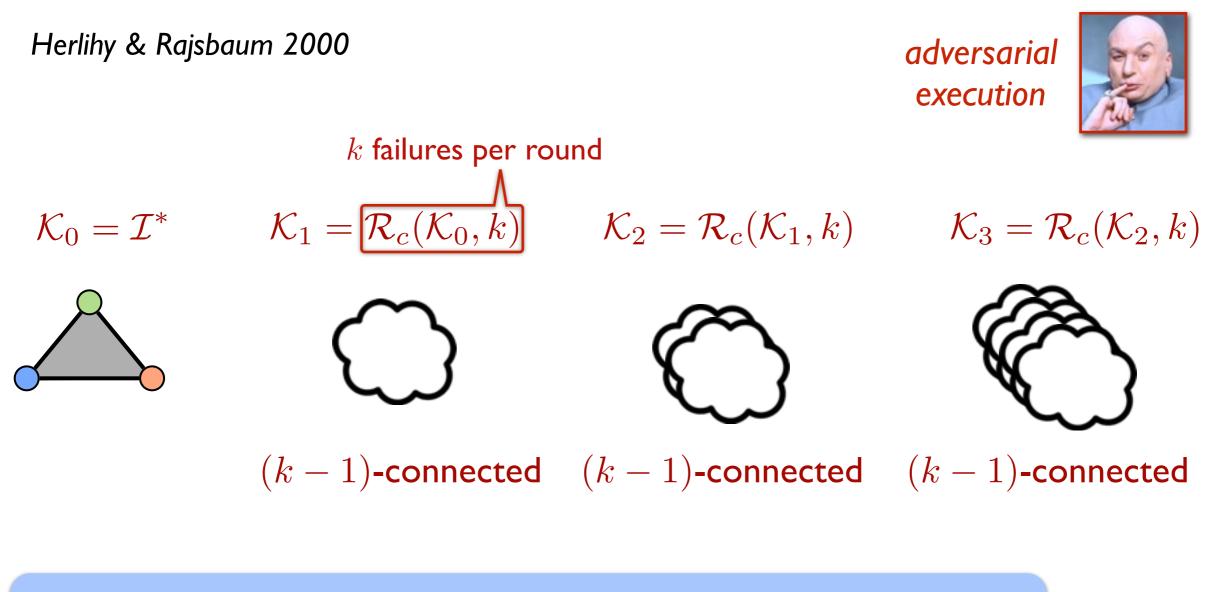
Theorem:

While the protocol complex is (k-1)-connected, we cannot solve the k-set agreement task





Theorem: We cannot solve k-set agreement with t failures in $\lfloor t/k \rfloor$ or less rounds.



Theorem: We cannot solve k-set agreement with t failures in $\lfloor t/k \rfloor$ or less rounds. We have a $\lfloor t/k \rfloor + 1$ protocol

Is equivocation a problem in synchronous systems?

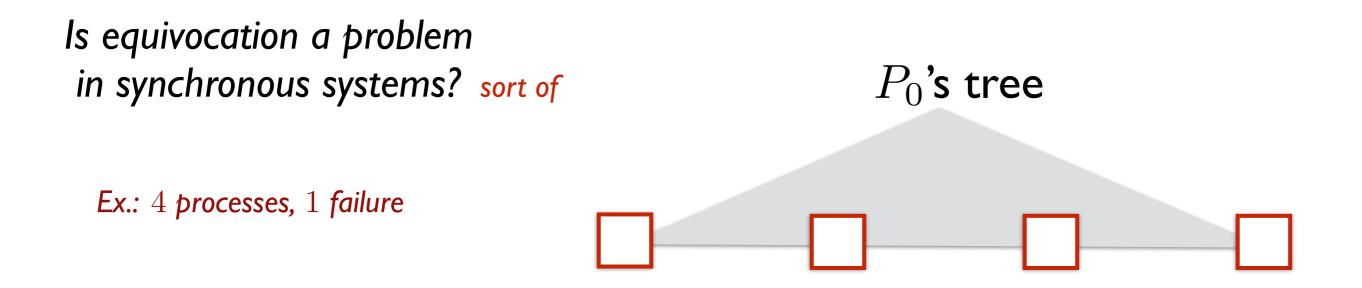
Is equivocation a problem in synchronous systems? sort of

Is equivocation a problem in synchronous systems? sort of

Ex.: 4 processes, 1 failure

Is equivocation a problem in synchronous systems? sort of

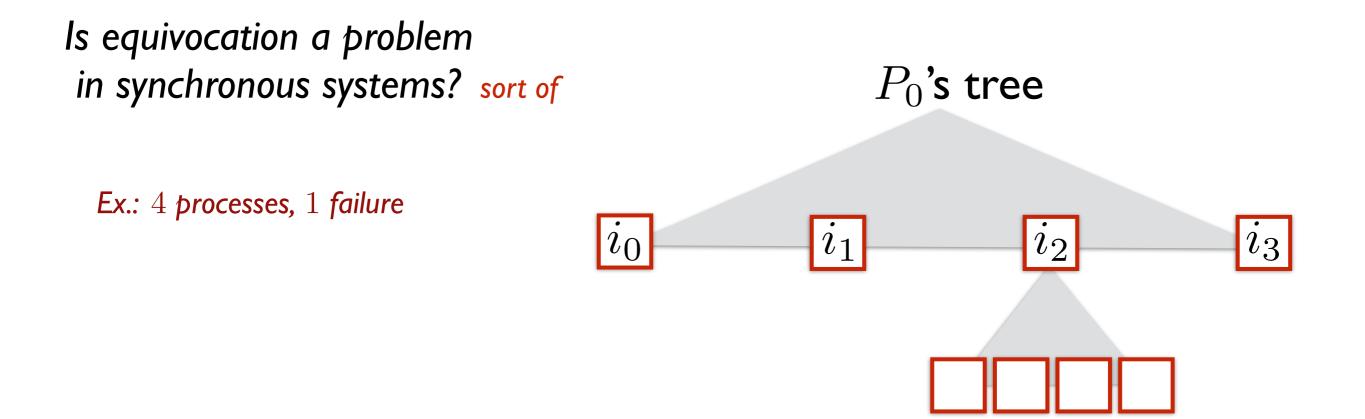
Ex.: 4 processes, 1 failure you know this

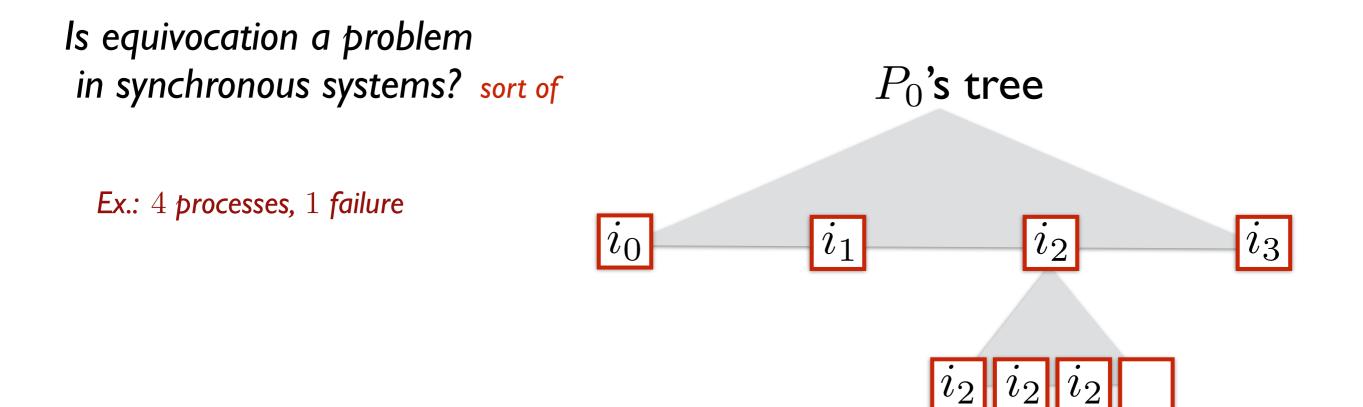


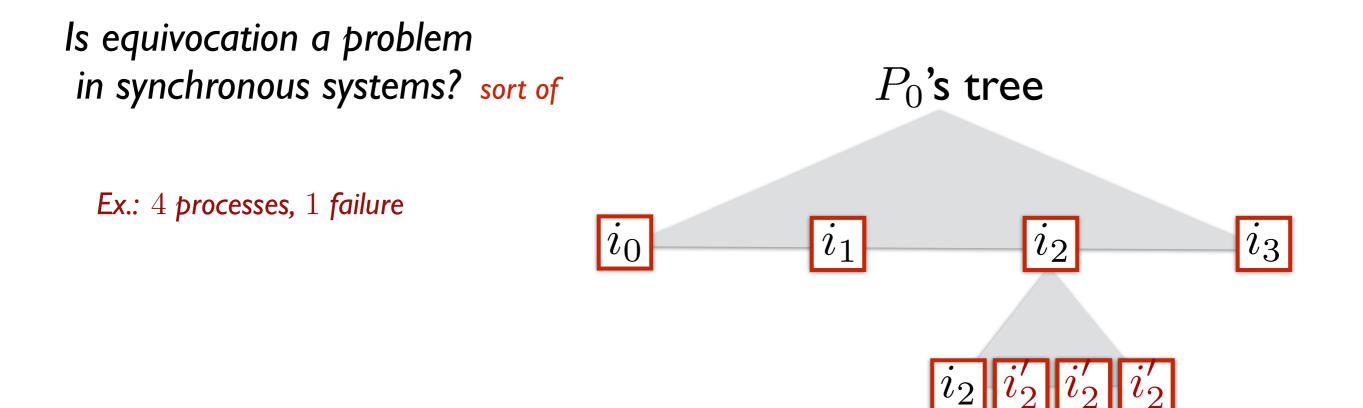
Is equivocation a problem in synchronous systems? sort of

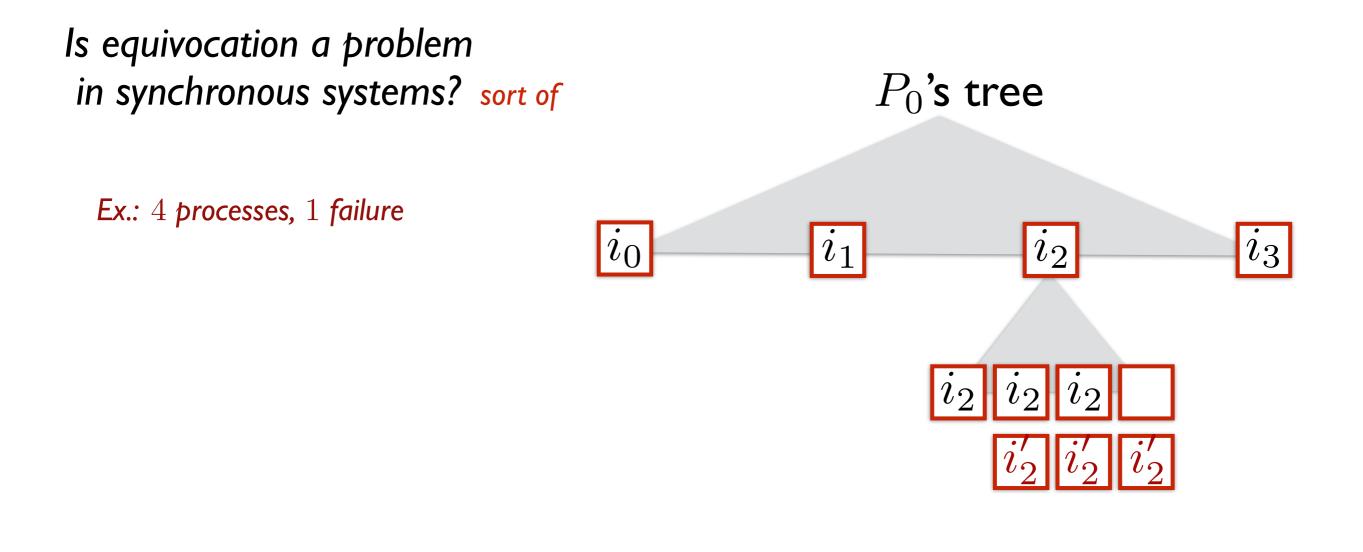
 P_0 's tree

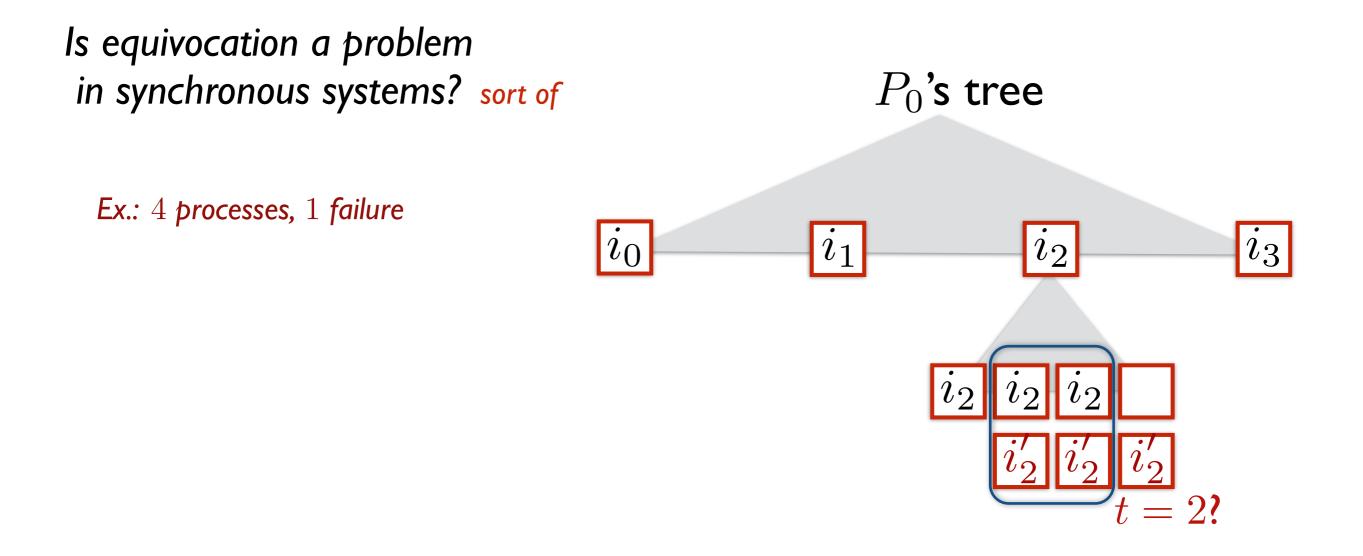
Ex.: 4 processes, 1 failure

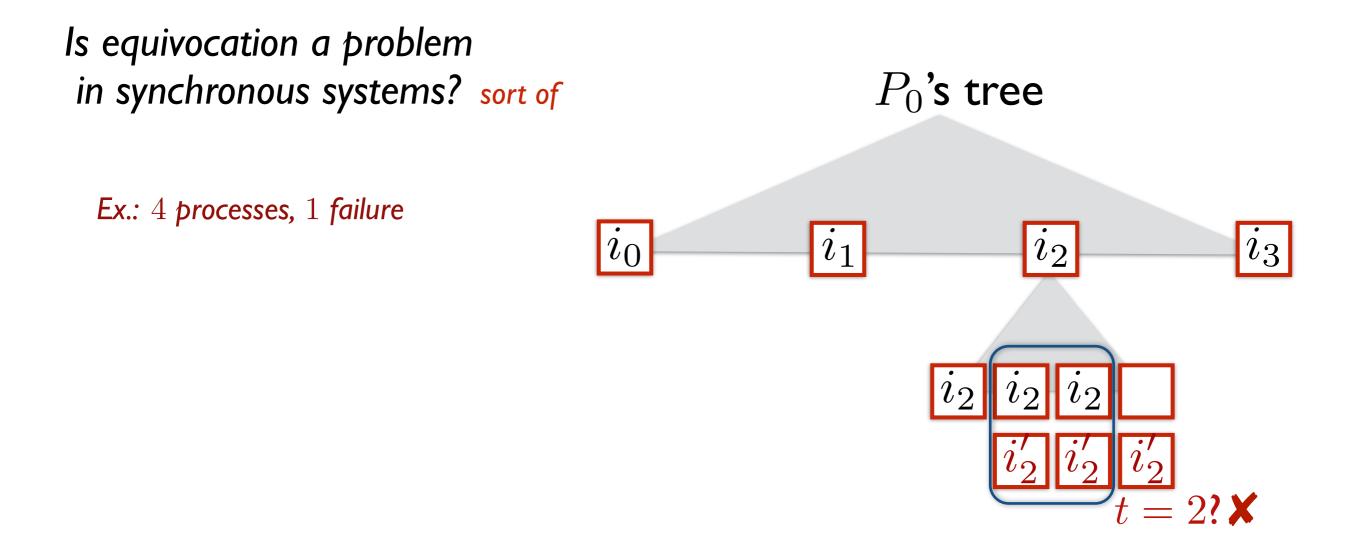


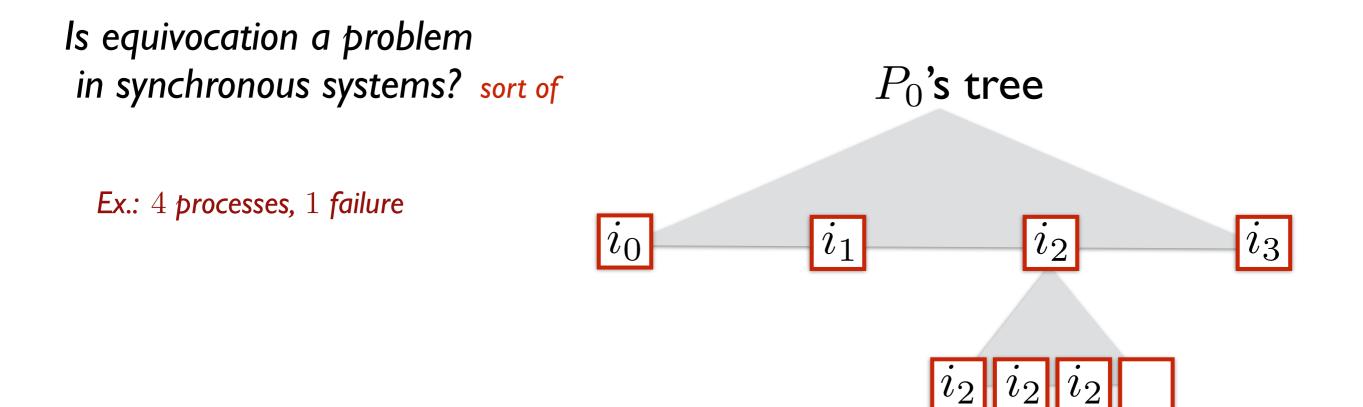




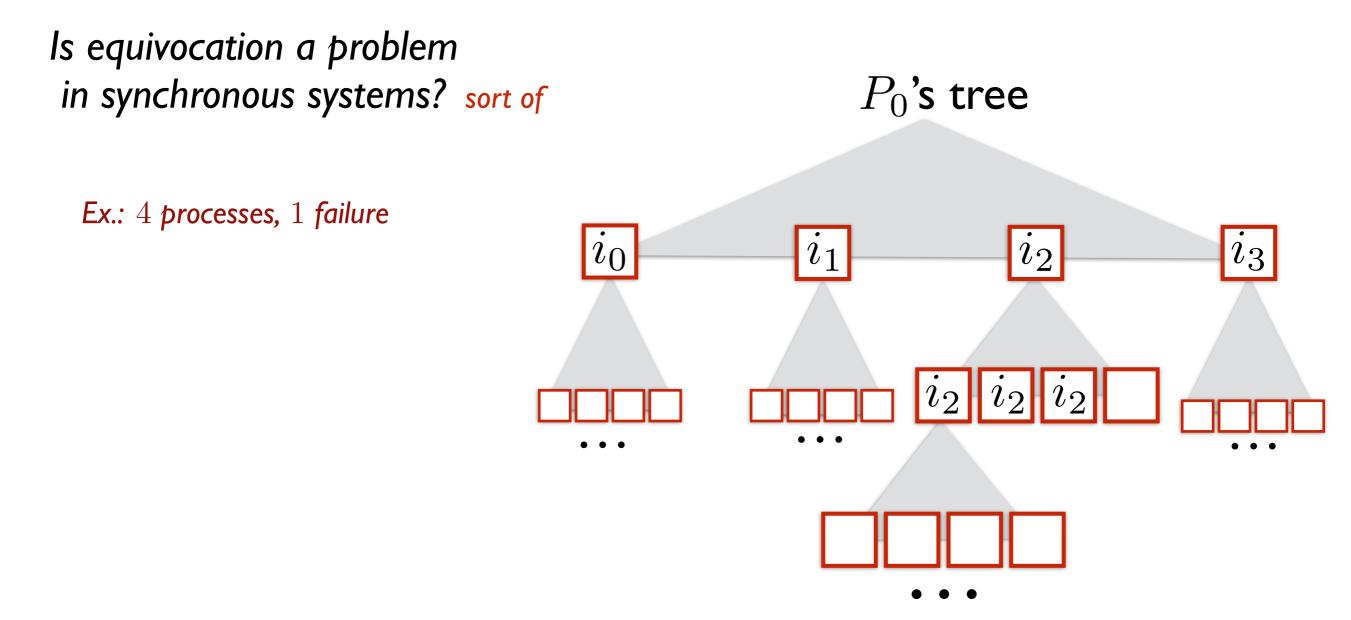


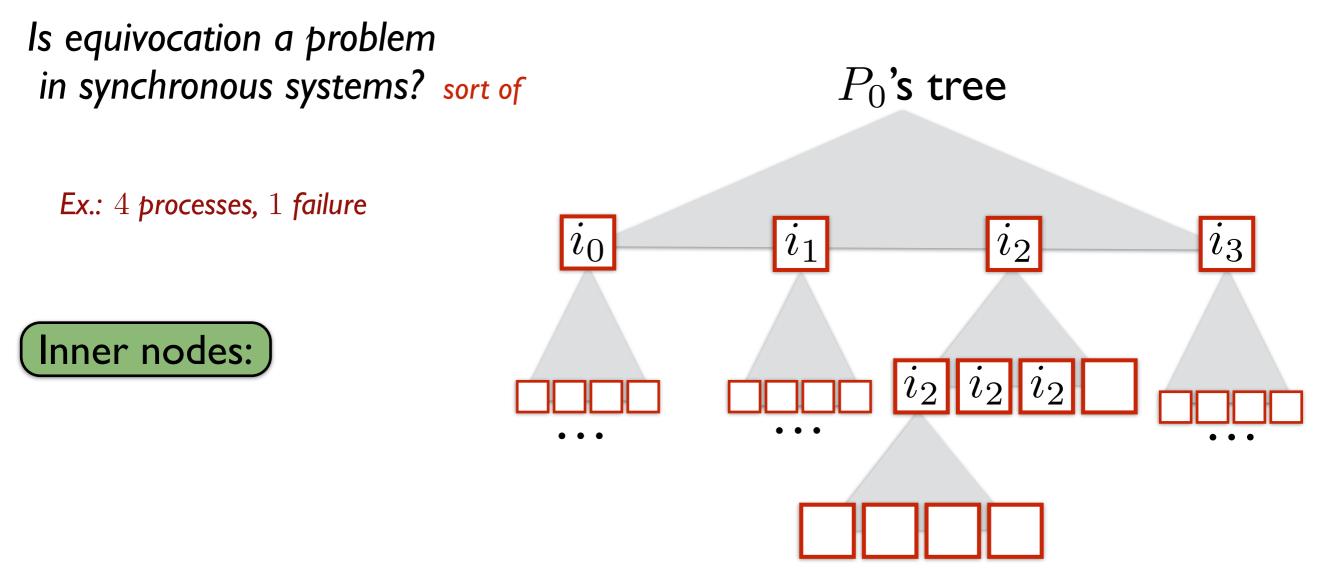




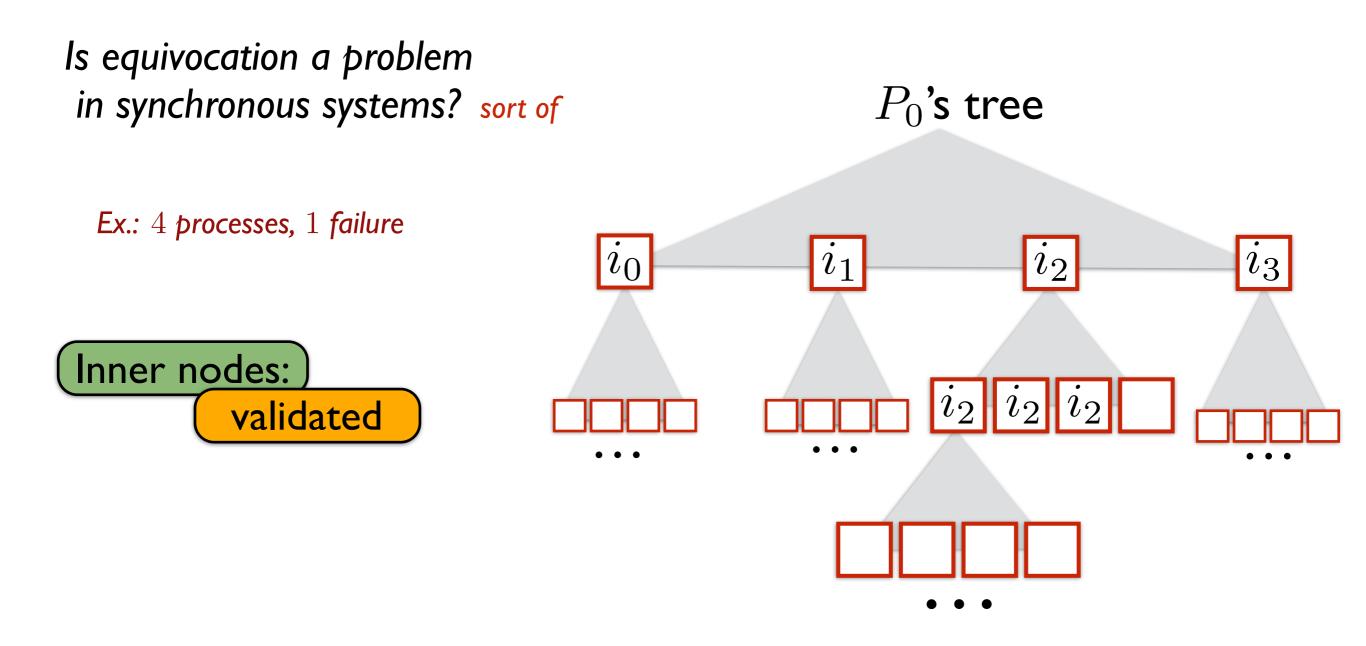


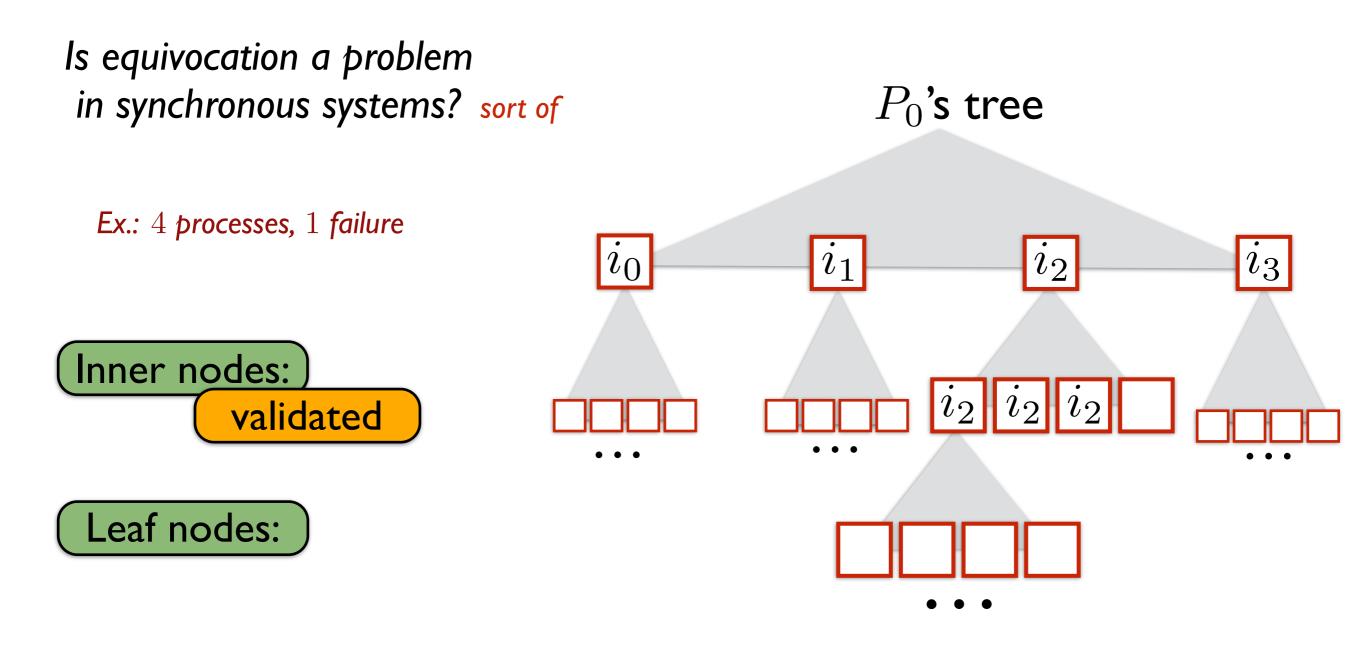
Is equivocation a problem in synchronous systems? sort of P_0 's tree Ex.: 4 processes, 1 failure i_0 i_1 i_2 i_3 i_2 i_2 i_2 i_3

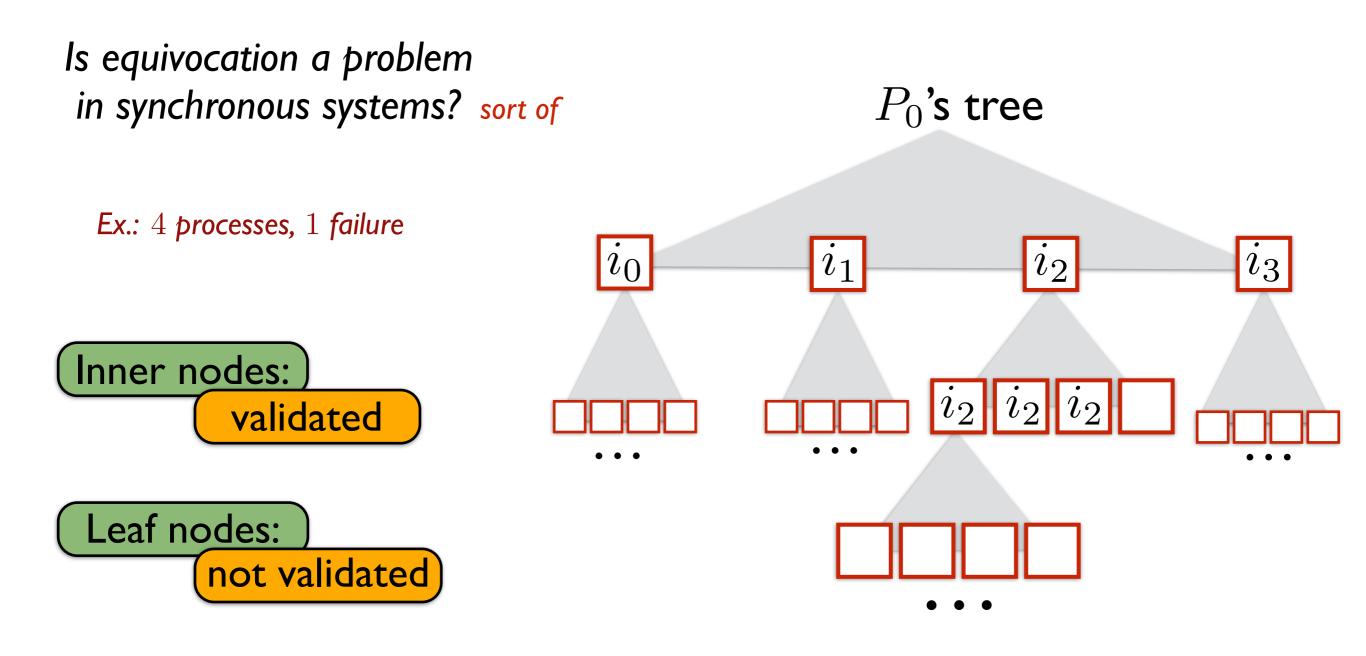


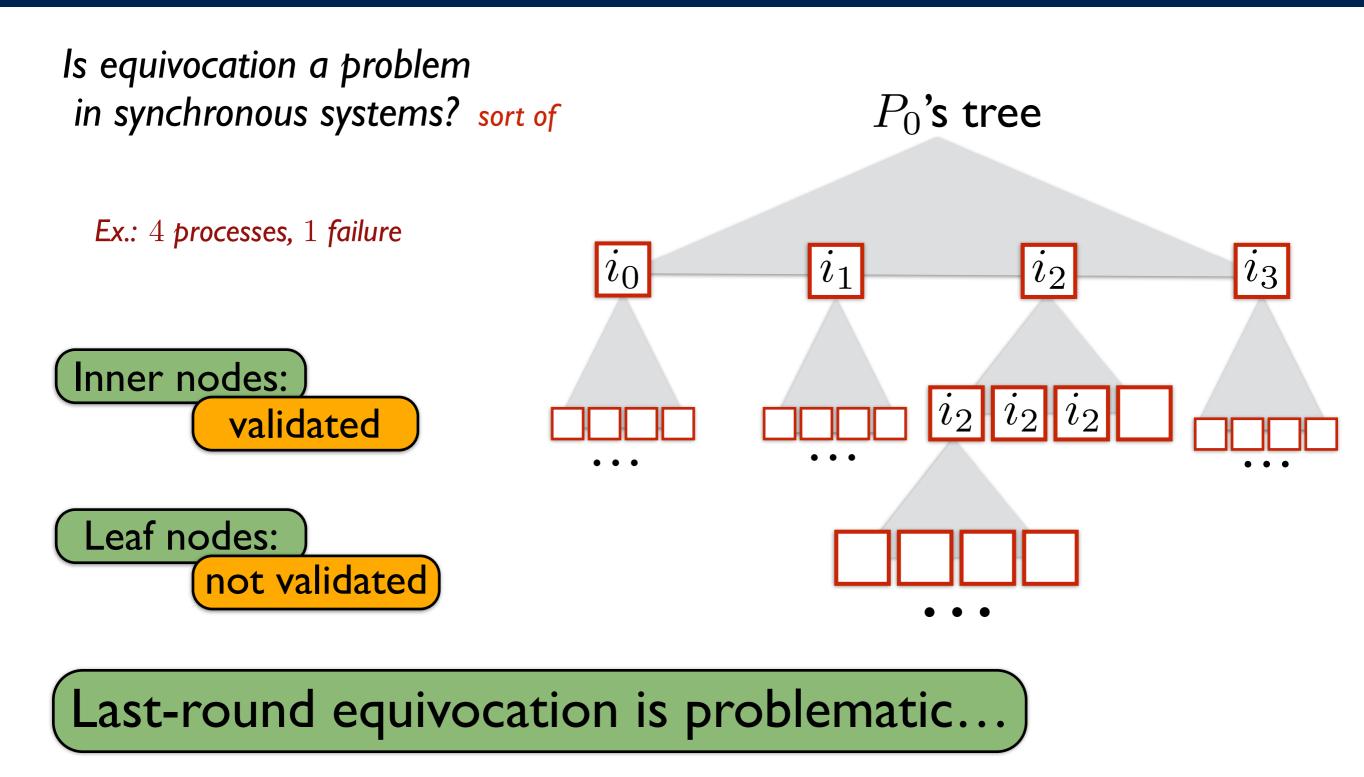


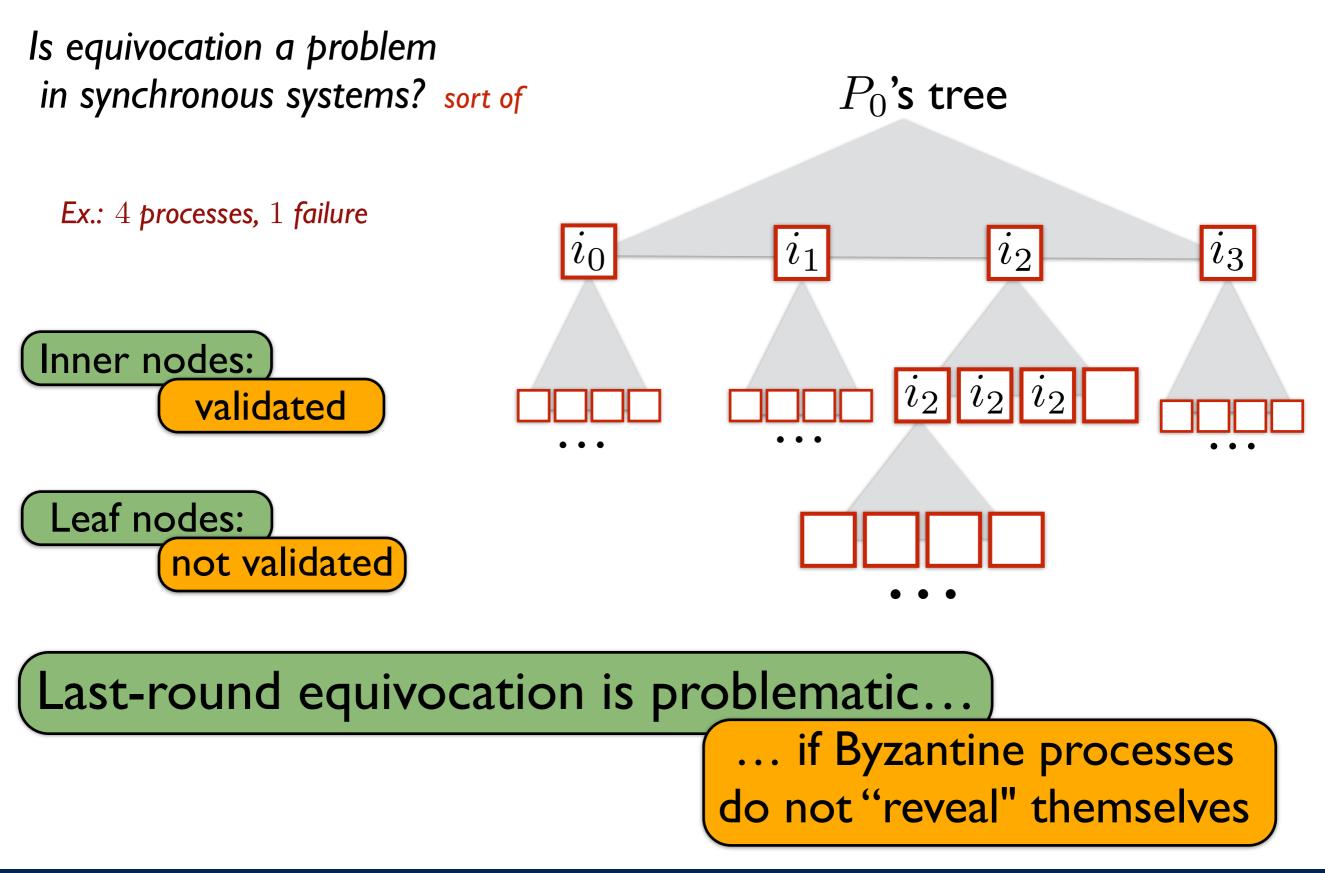
• • •

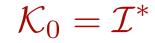


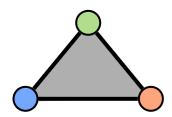








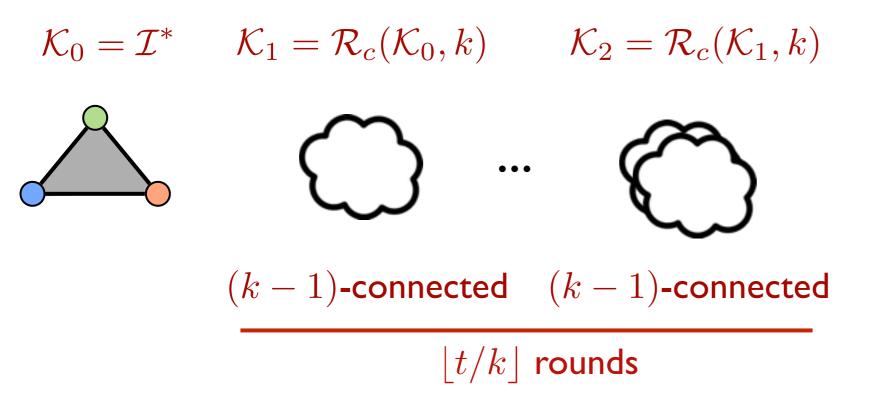


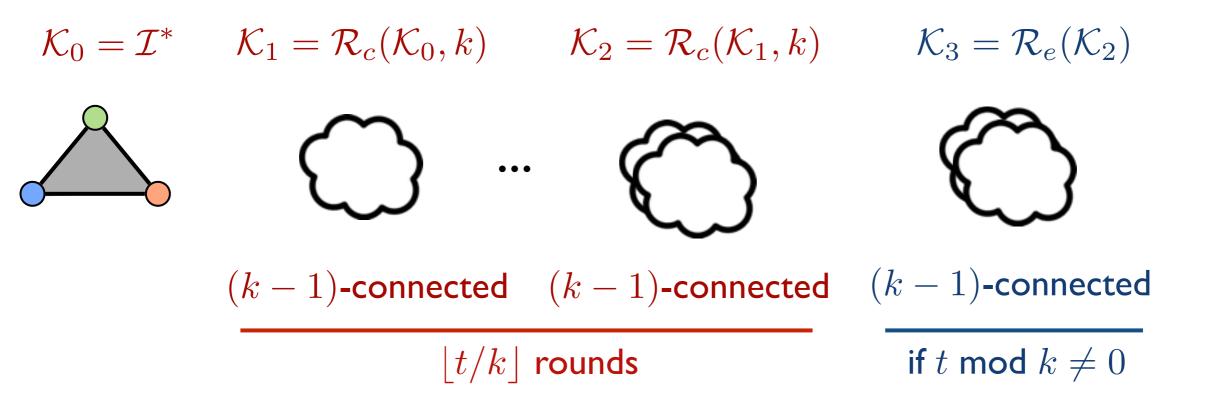


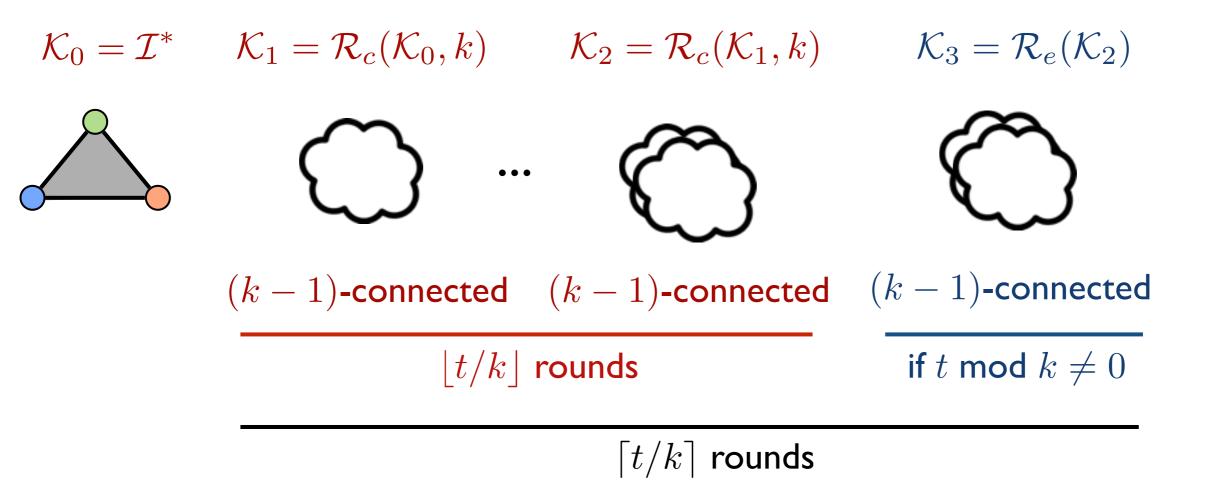
$$\mathcal{K}_0 = \mathcal{I}^* \qquad \mathcal{K}_1 = \mathcal{R}_c(\mathcal{K}_0, k) \qquad \mathcal{K}_2 = \mathcal{R}_c(\mathcal{K}_1, k)$$

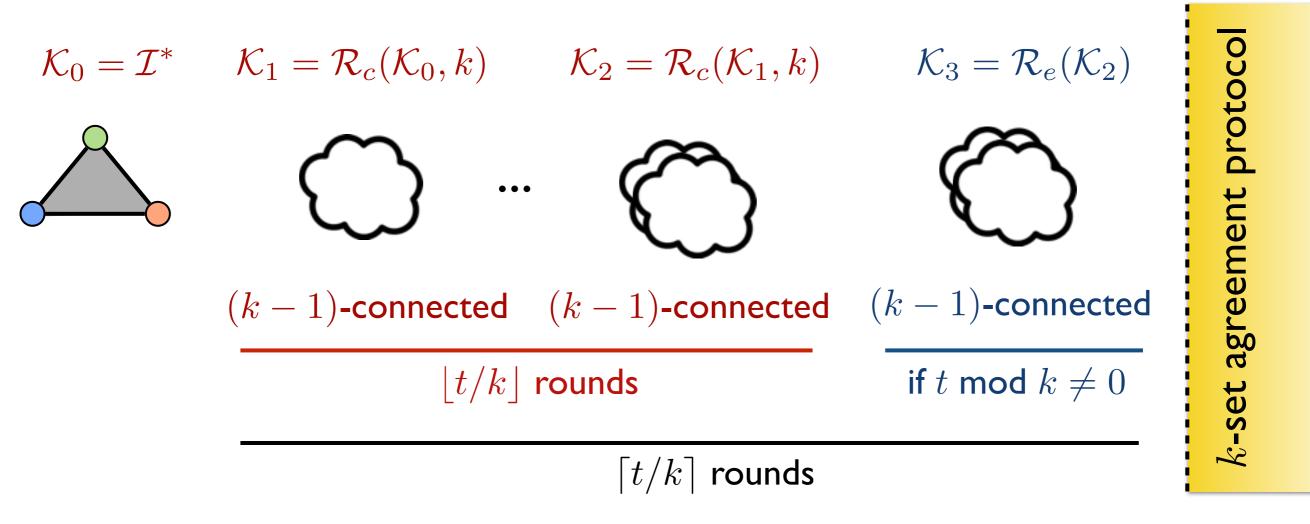
$$(k-1)\text{-connected} \qquad (k-1)\text{-connected}$$

39

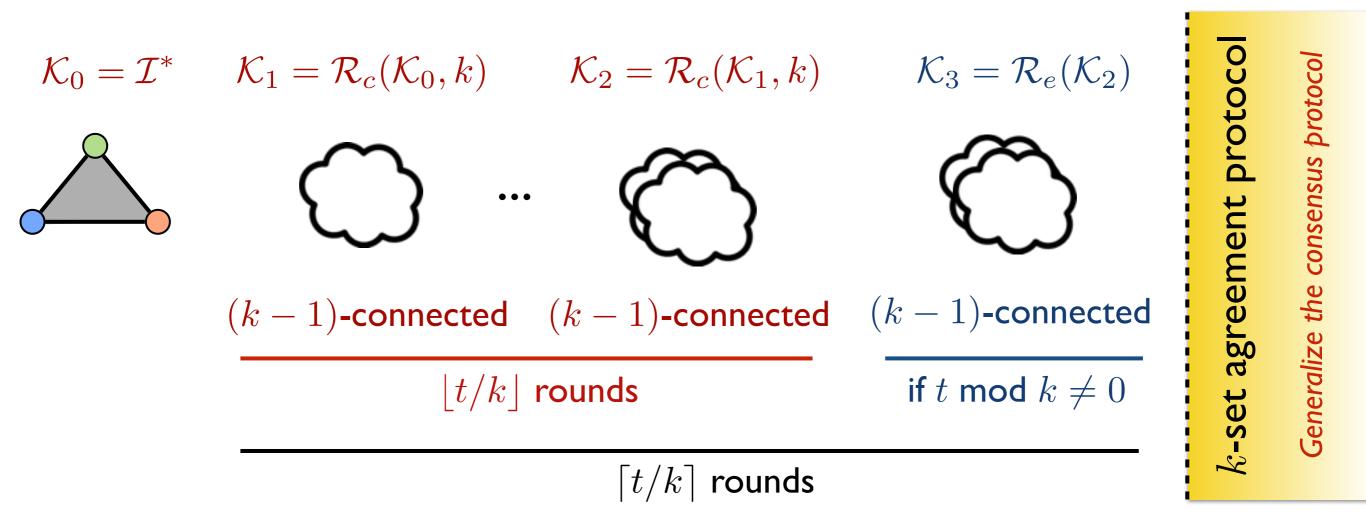


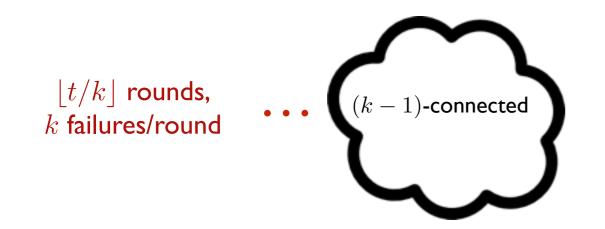


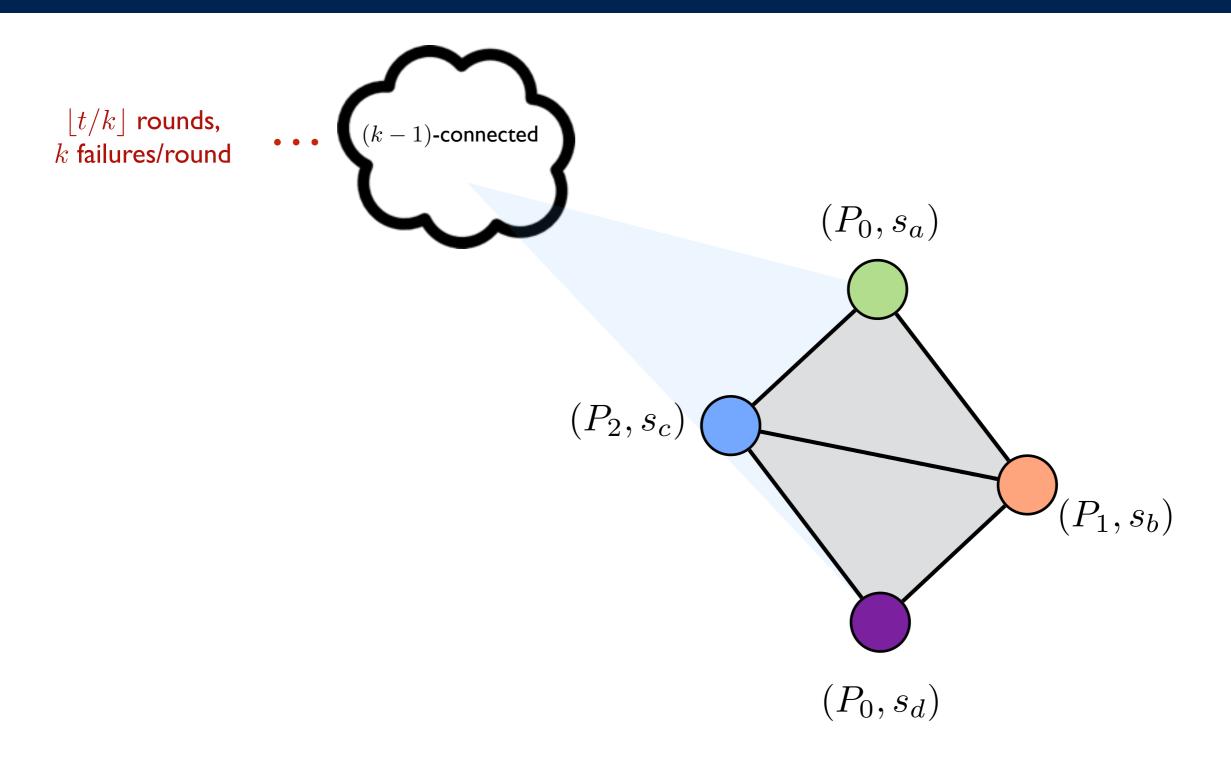


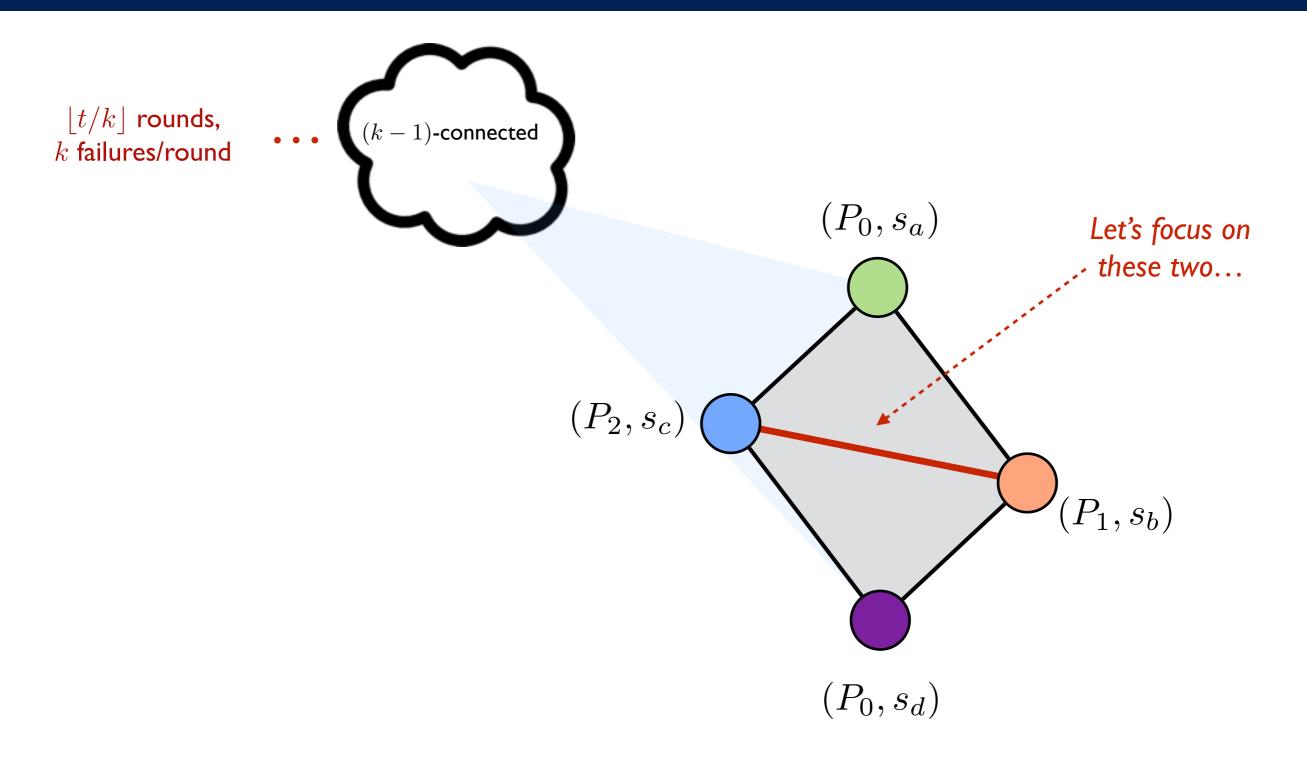


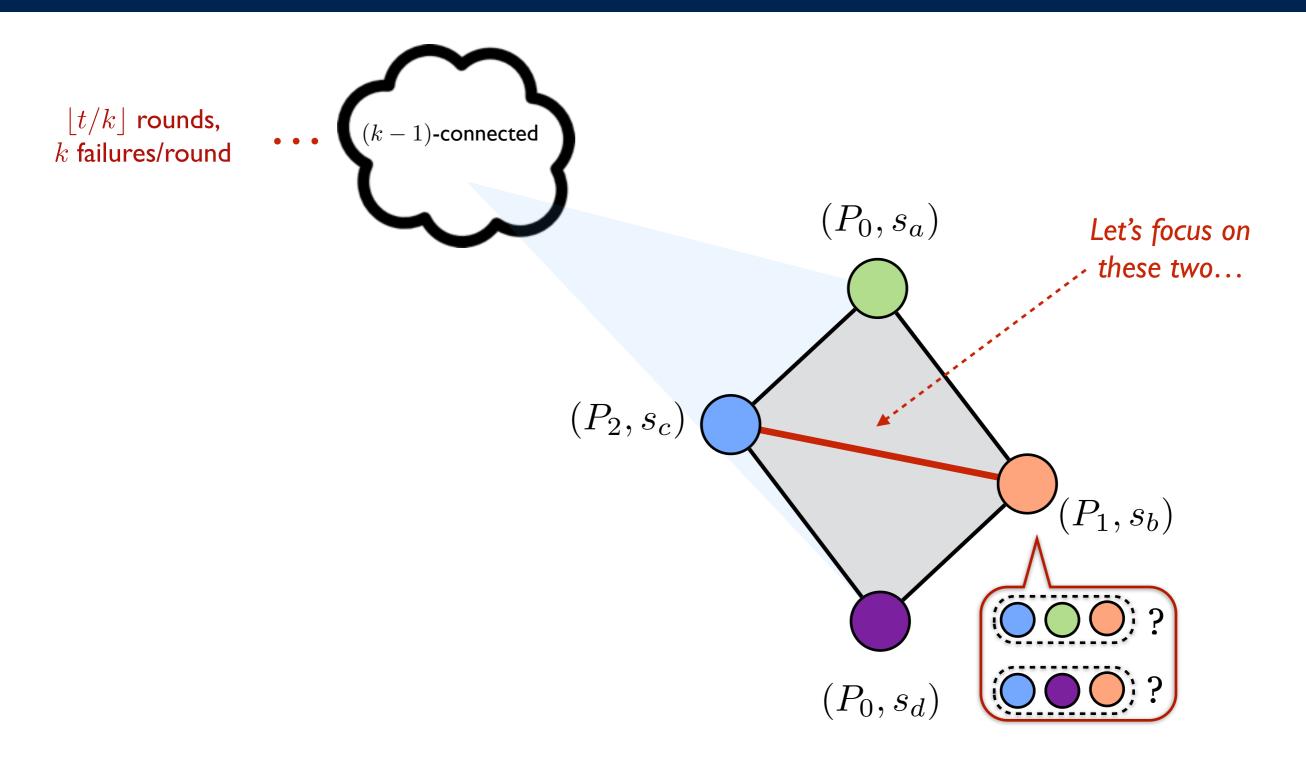
Strategy

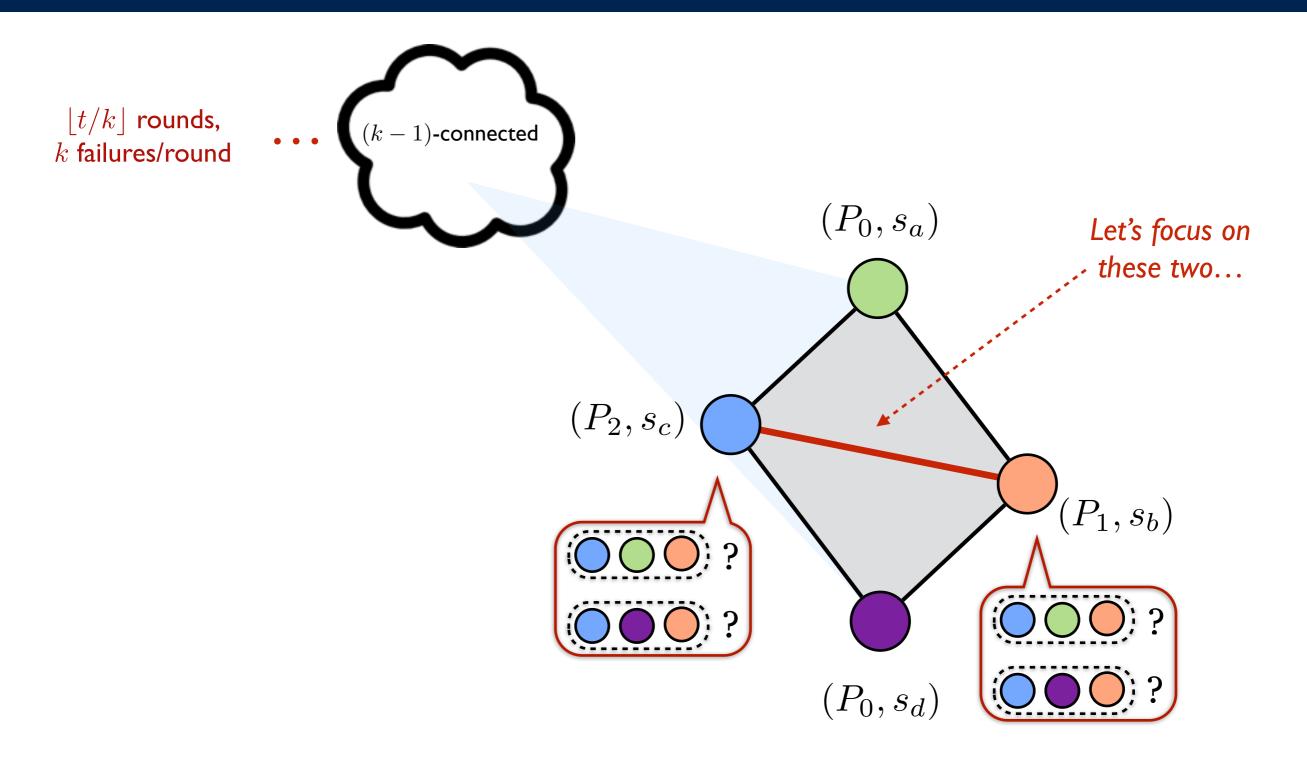


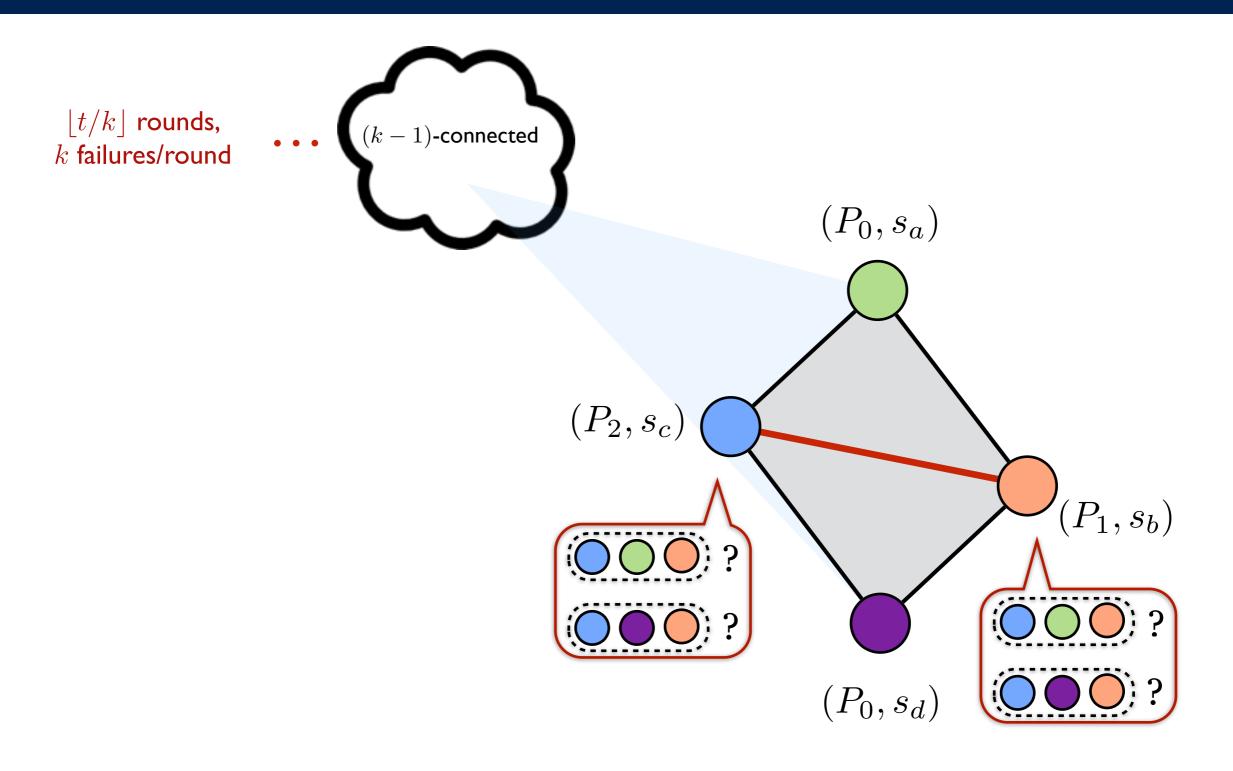


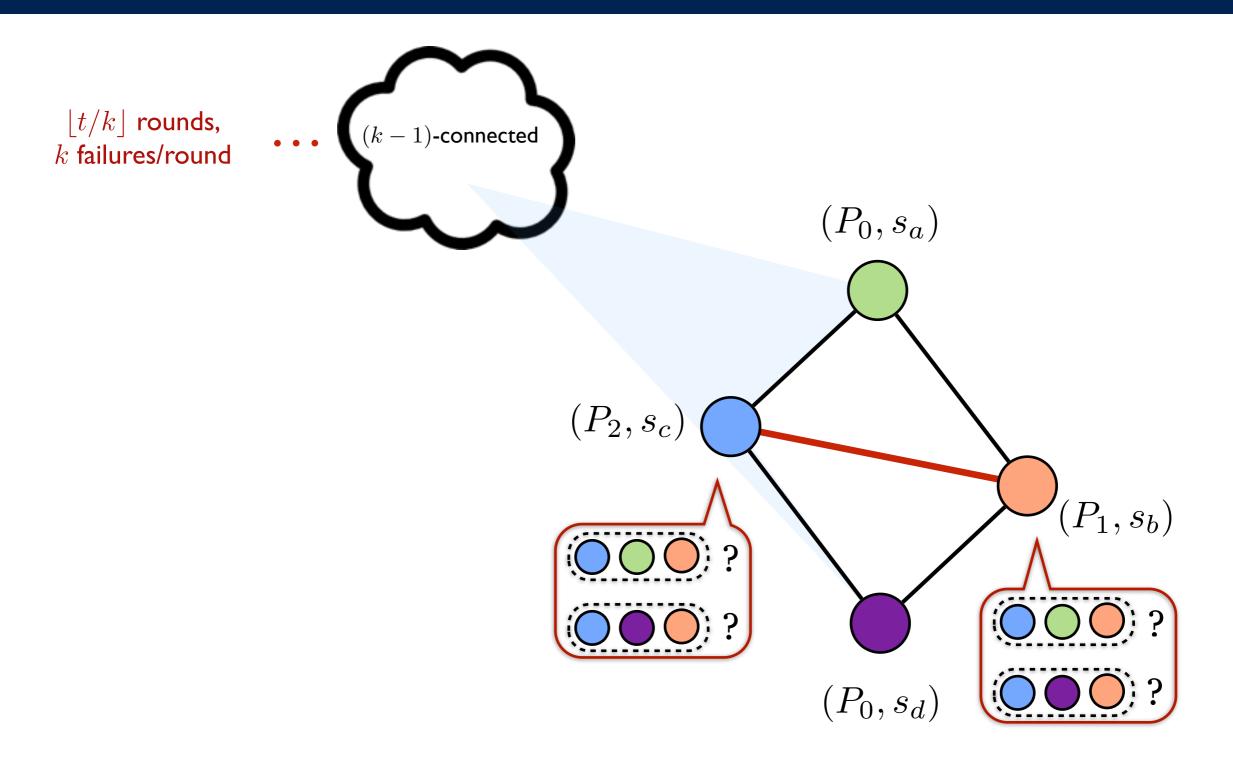


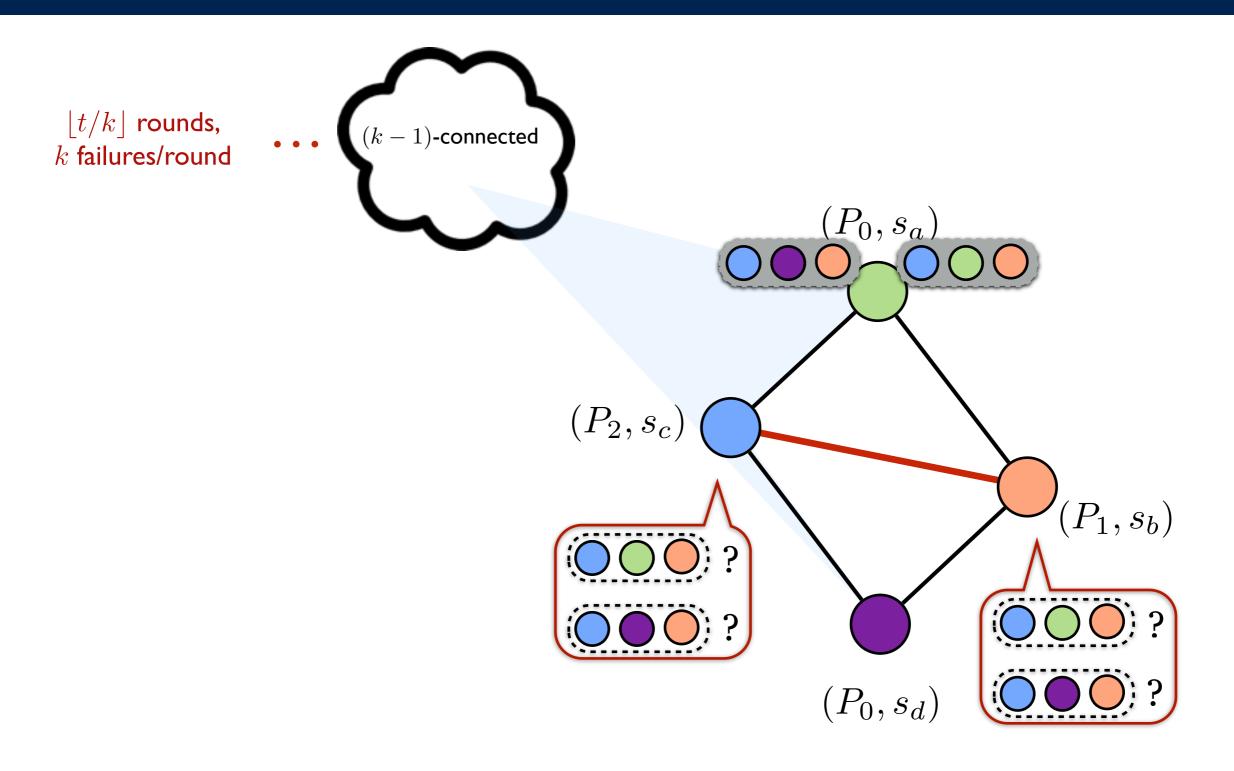


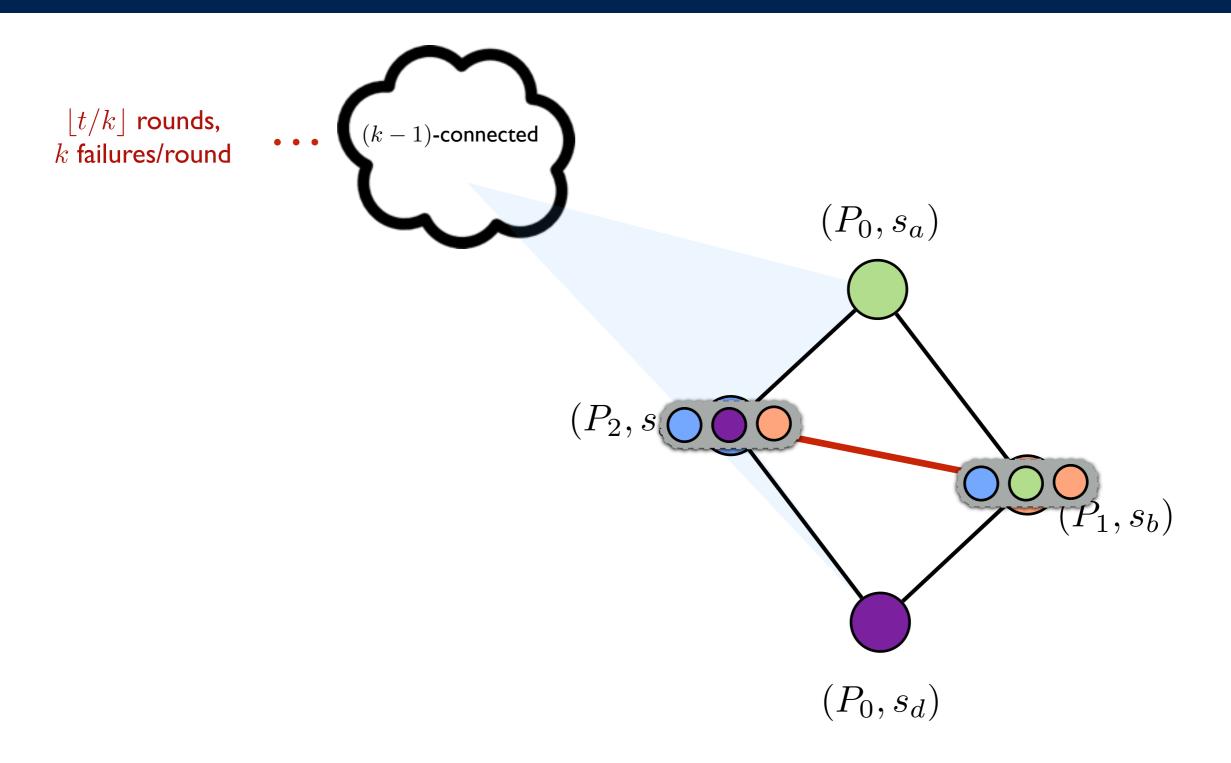


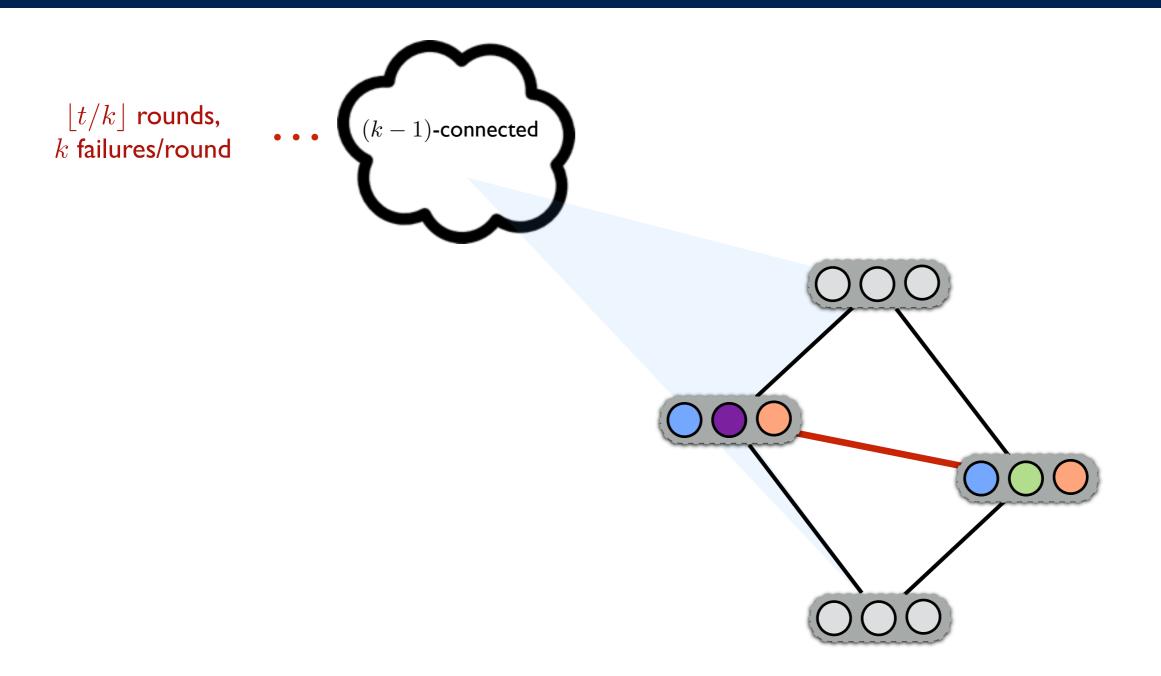


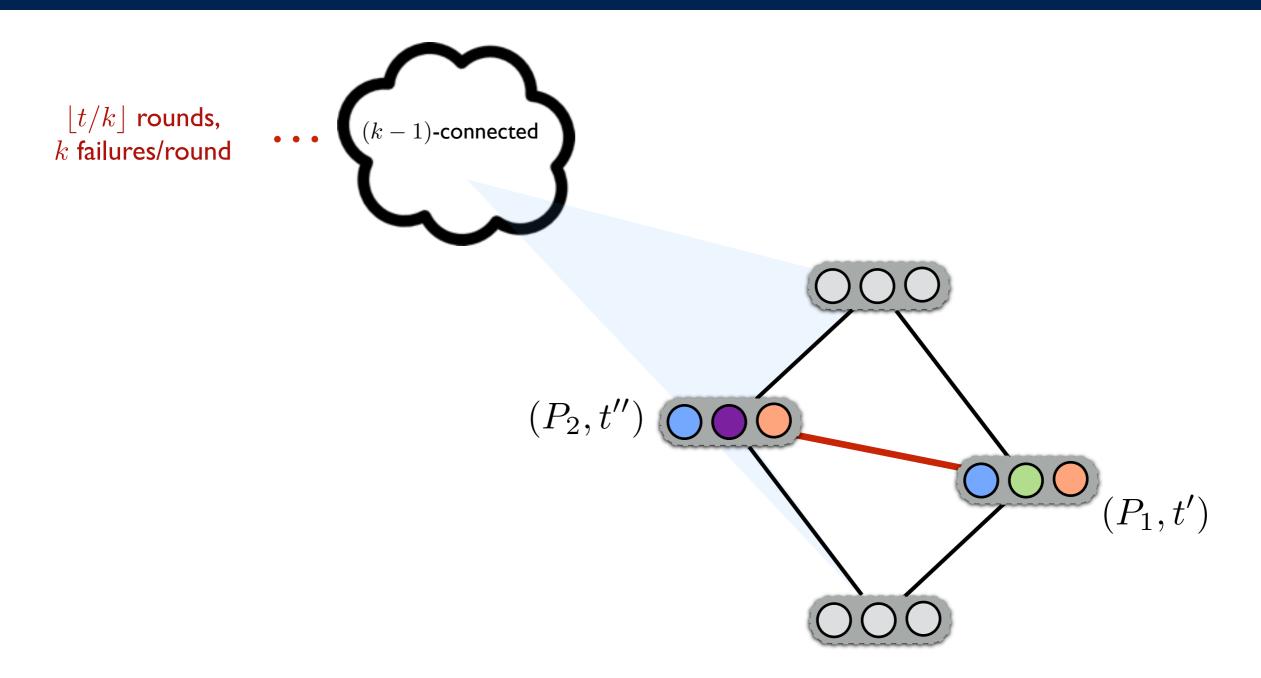


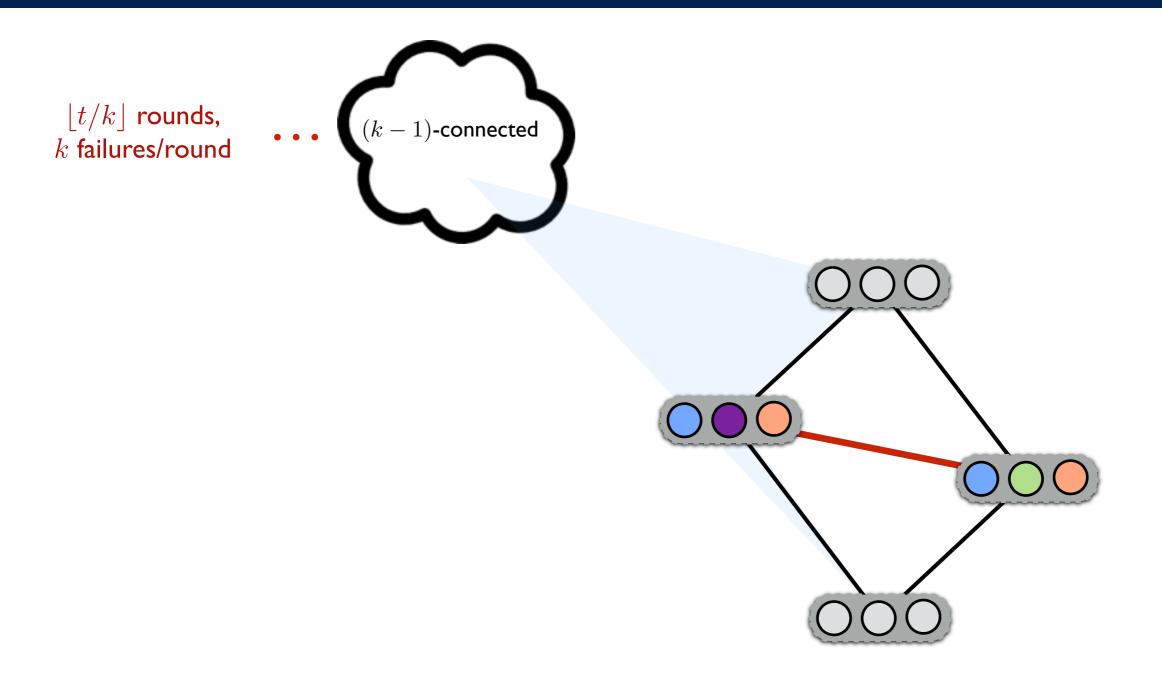


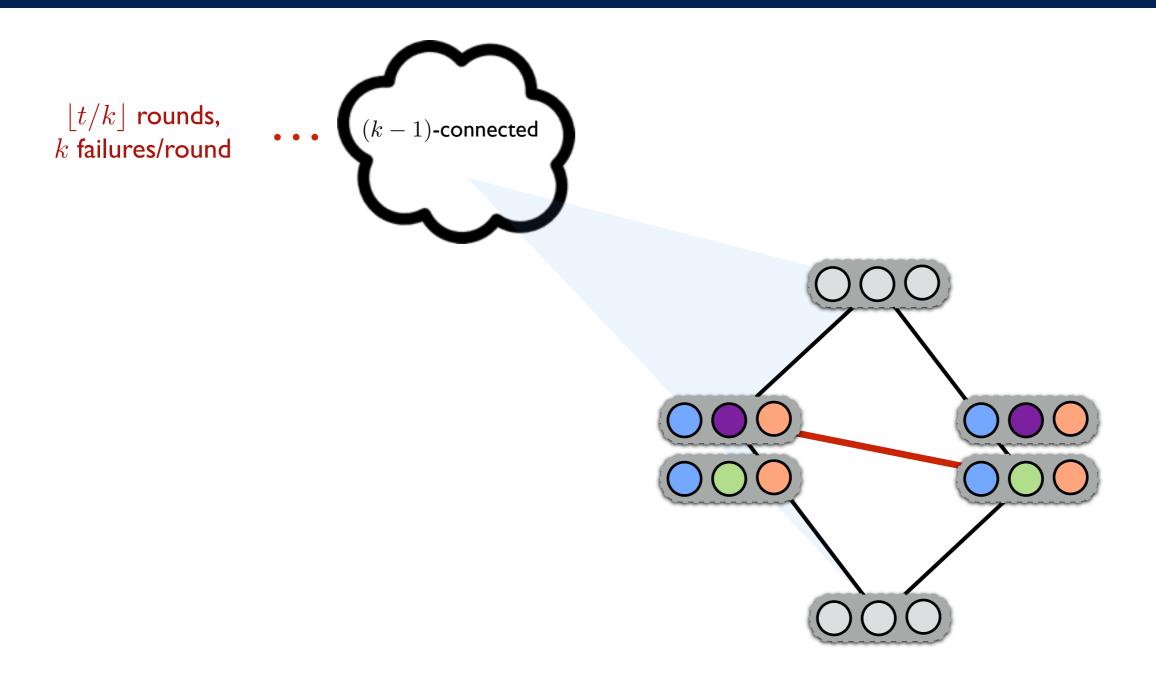


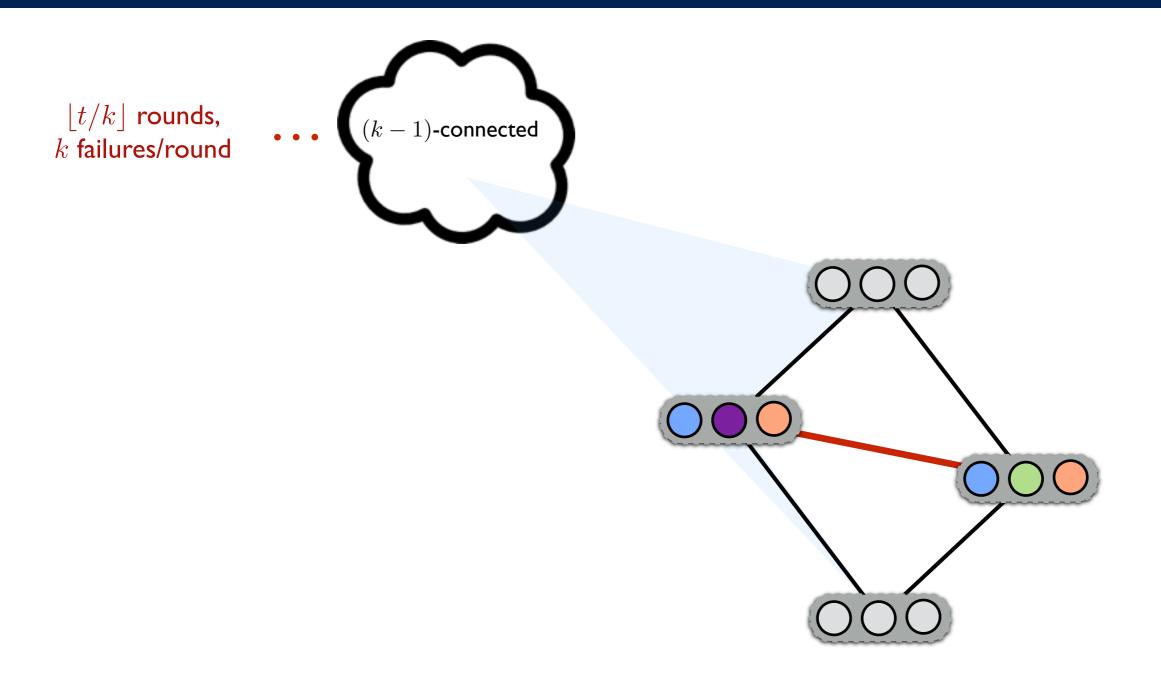


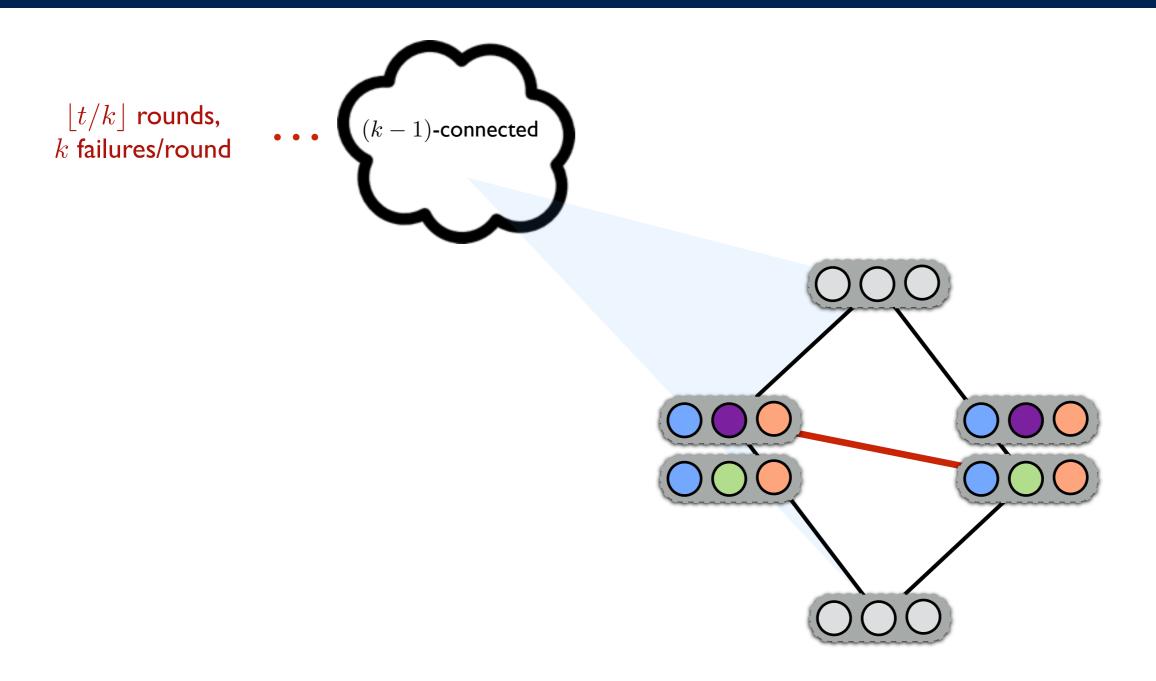


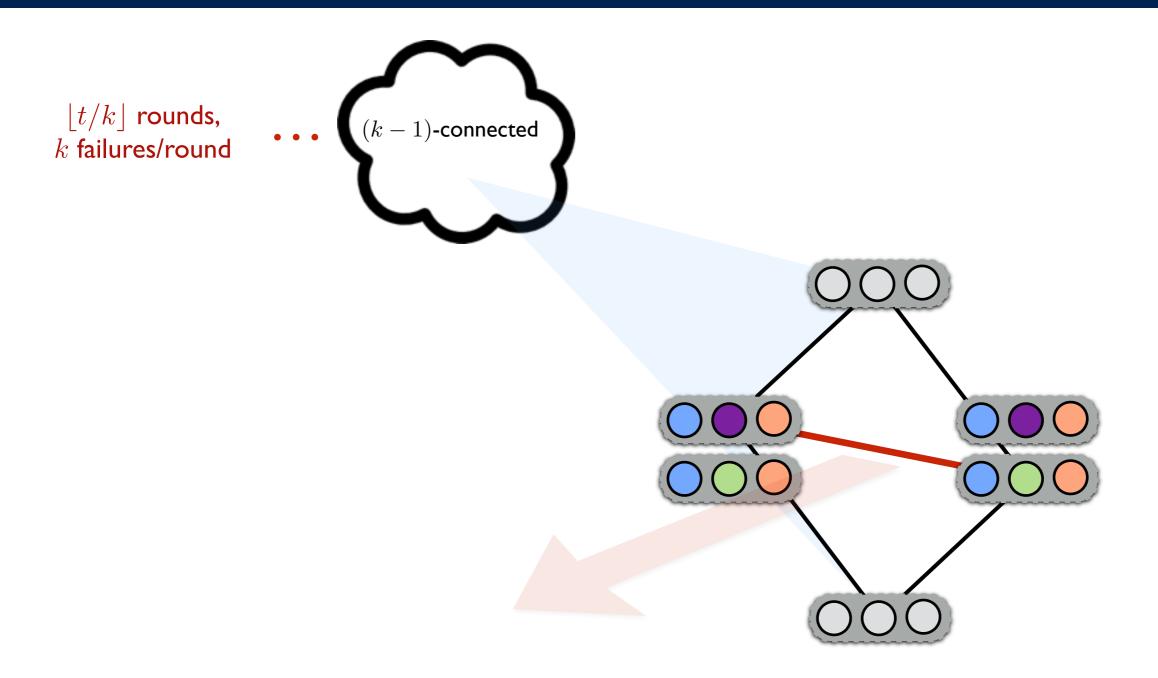


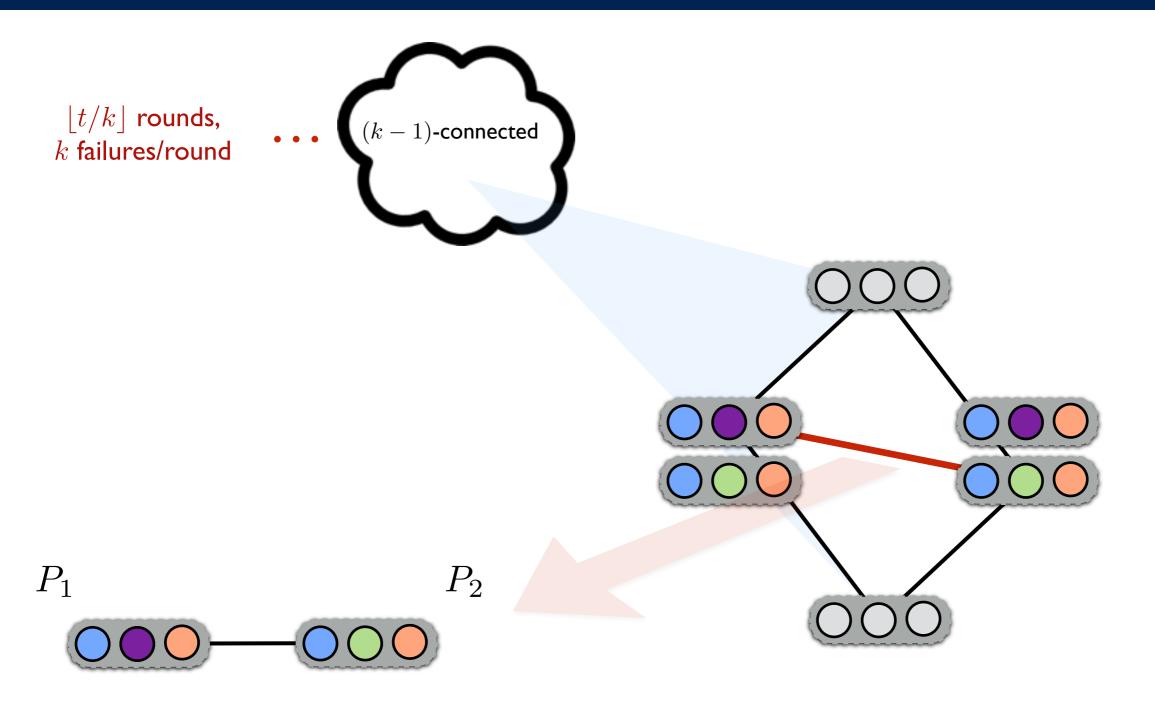


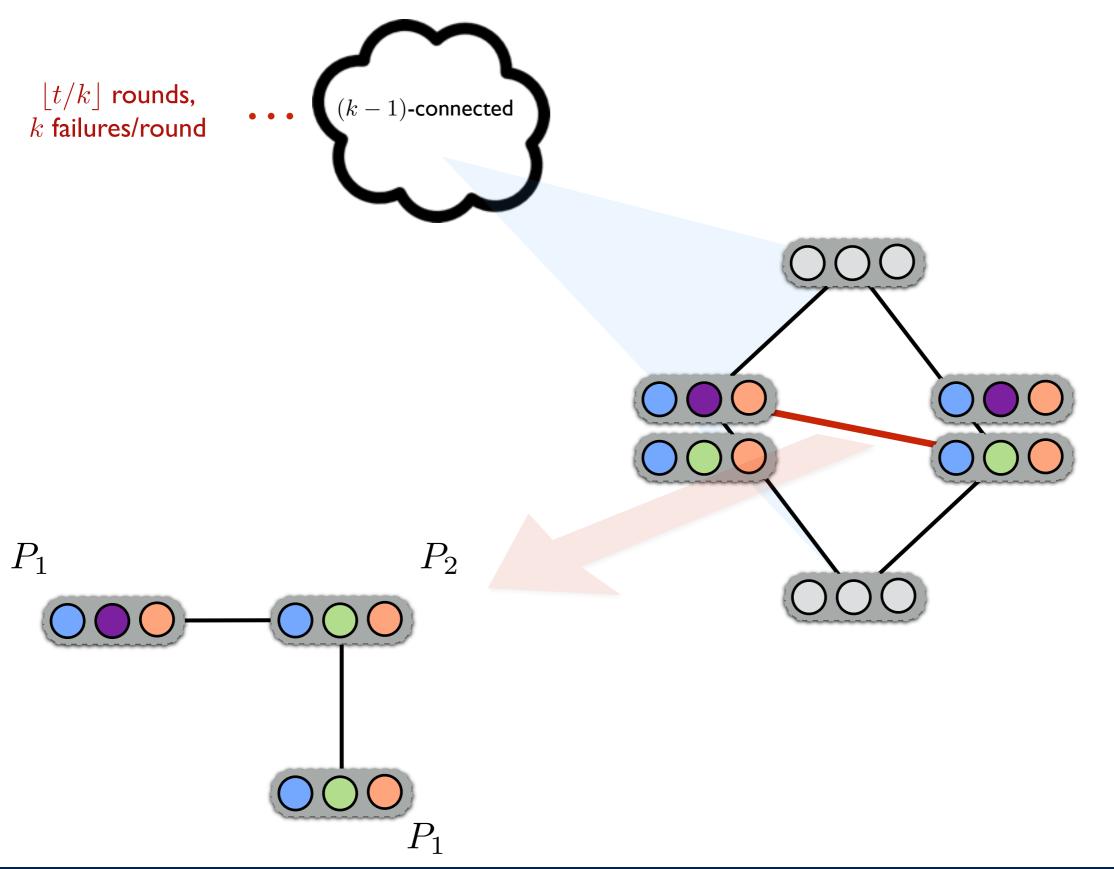


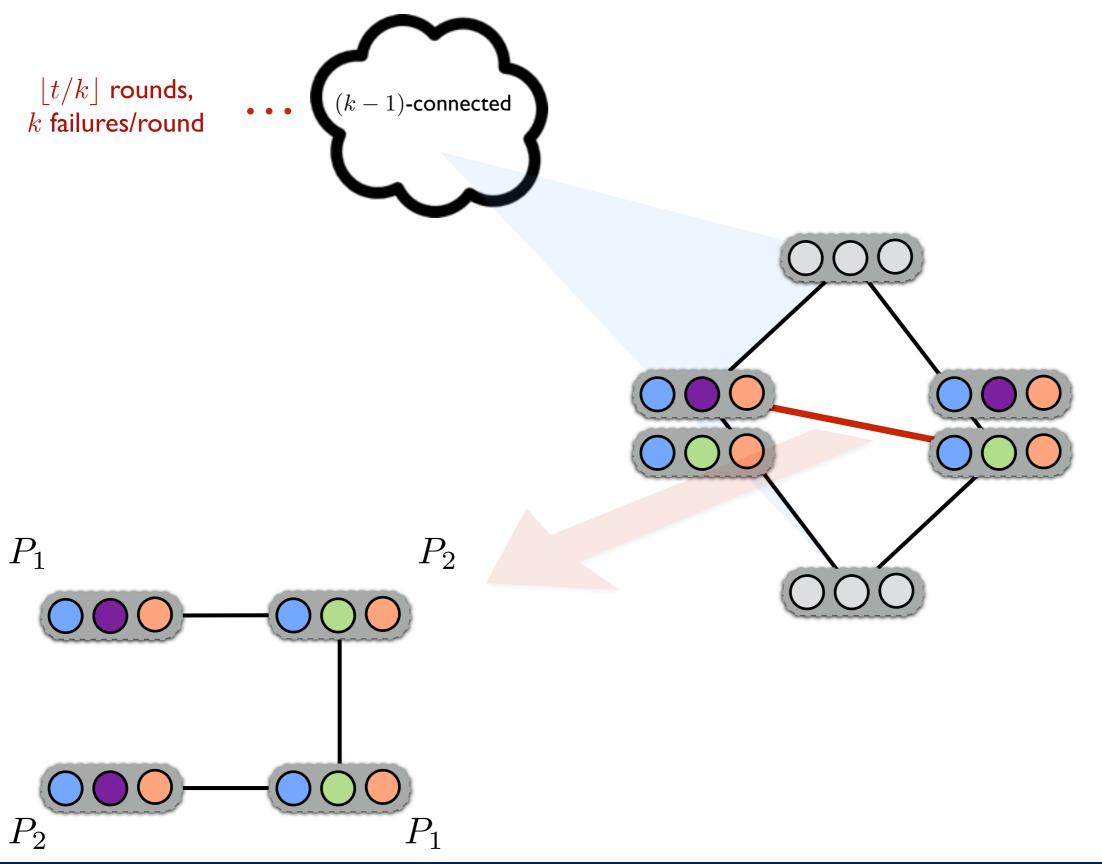


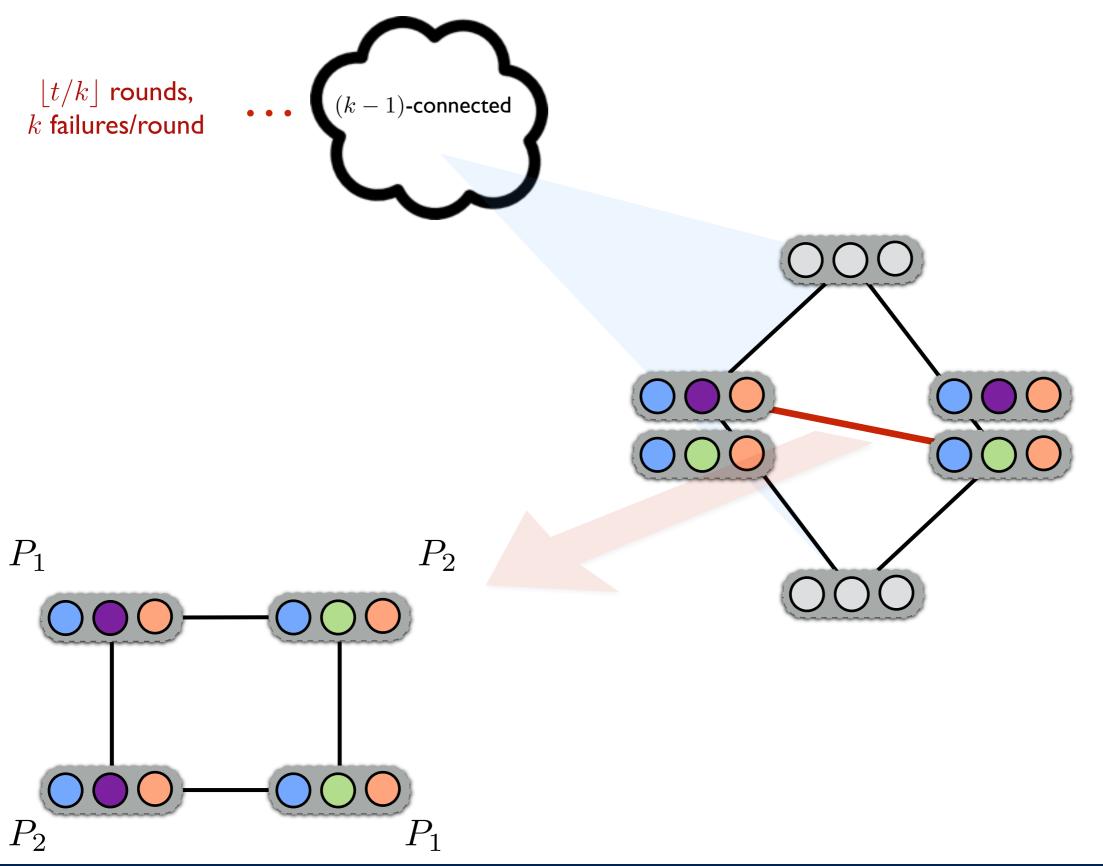


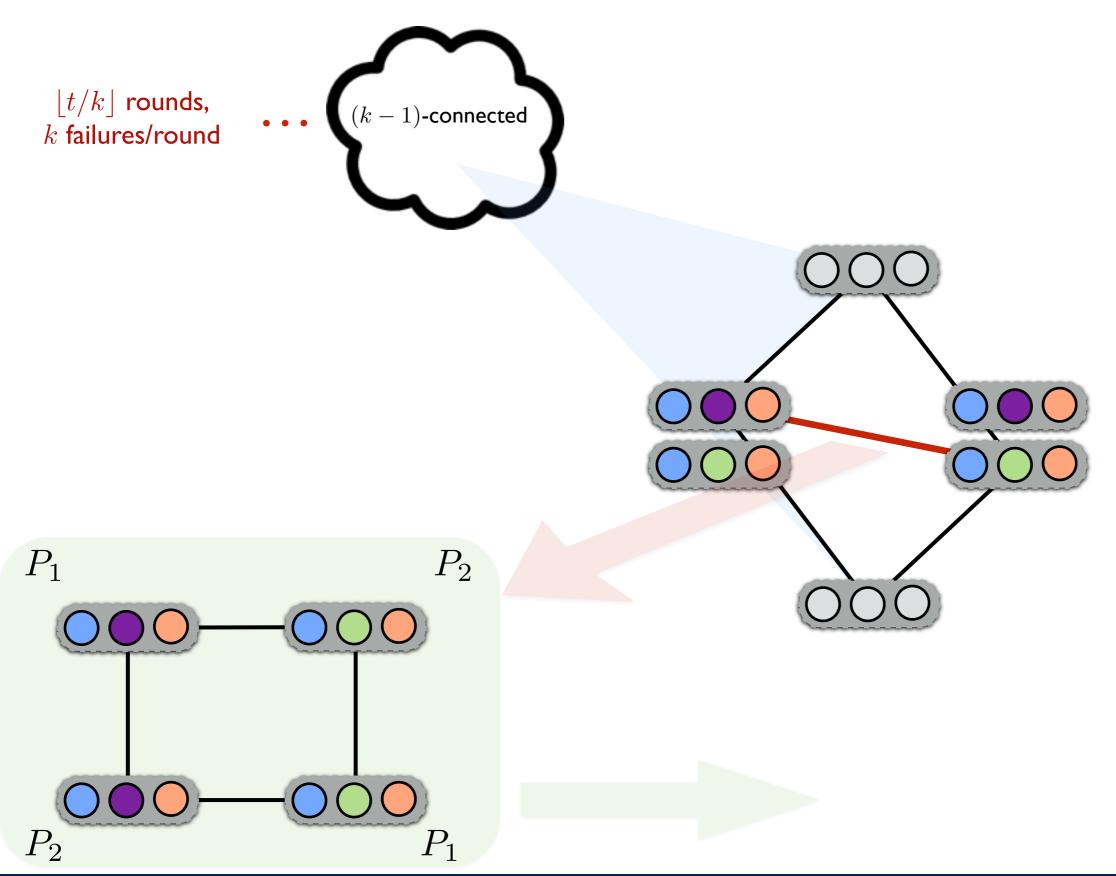


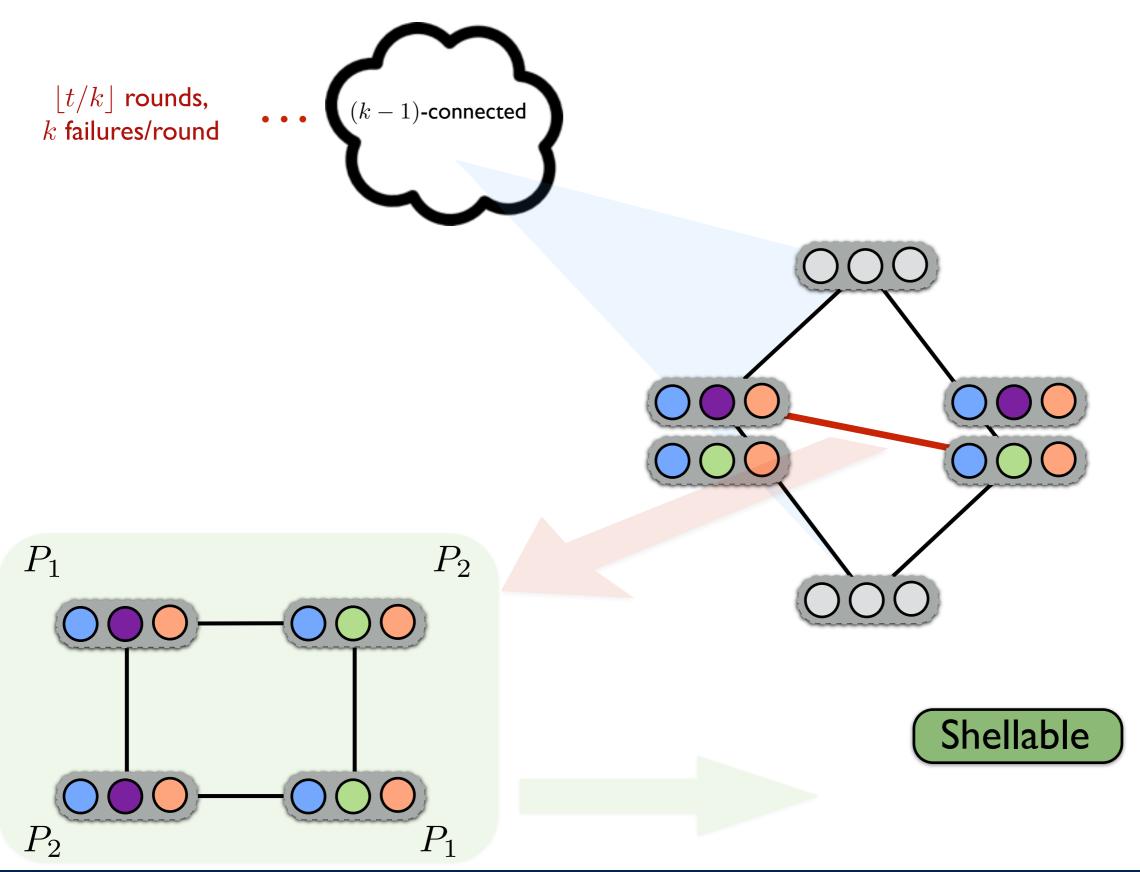


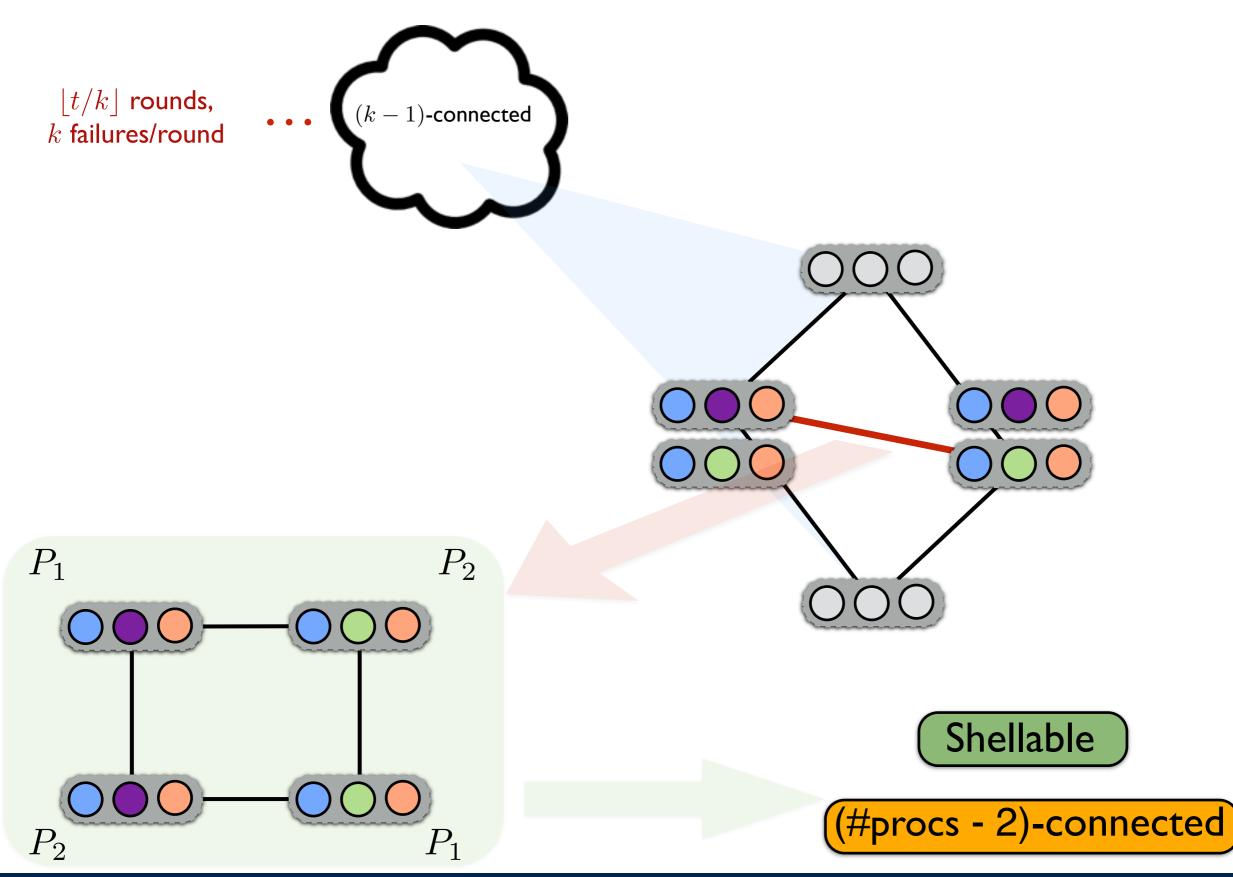


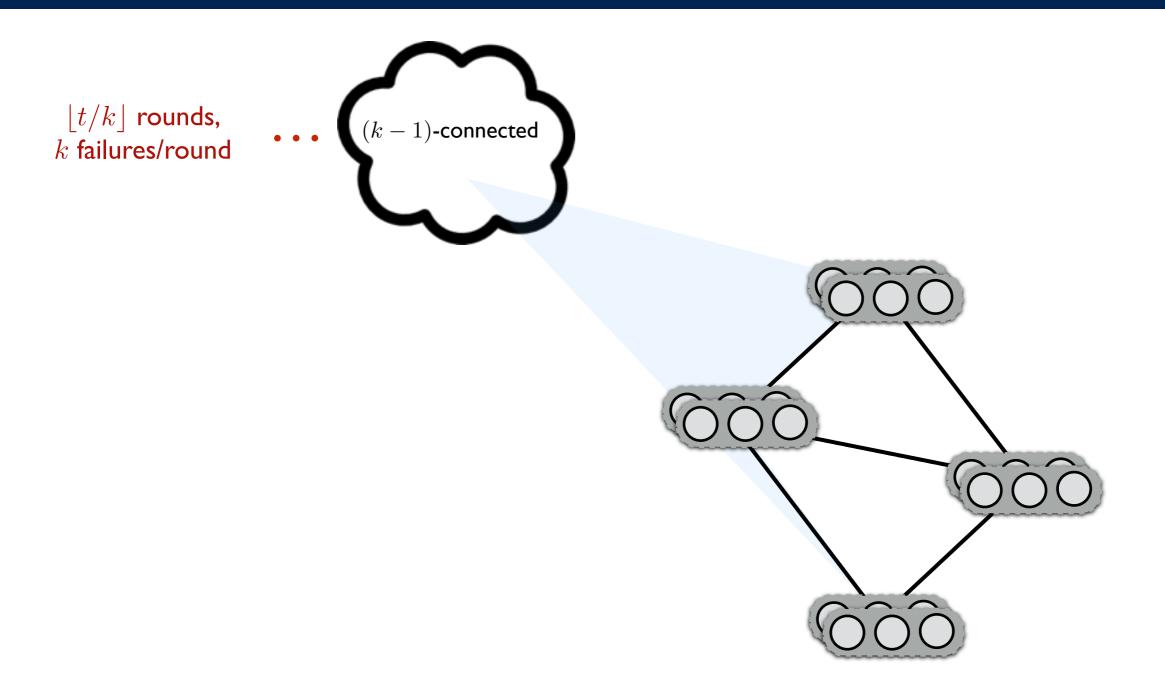


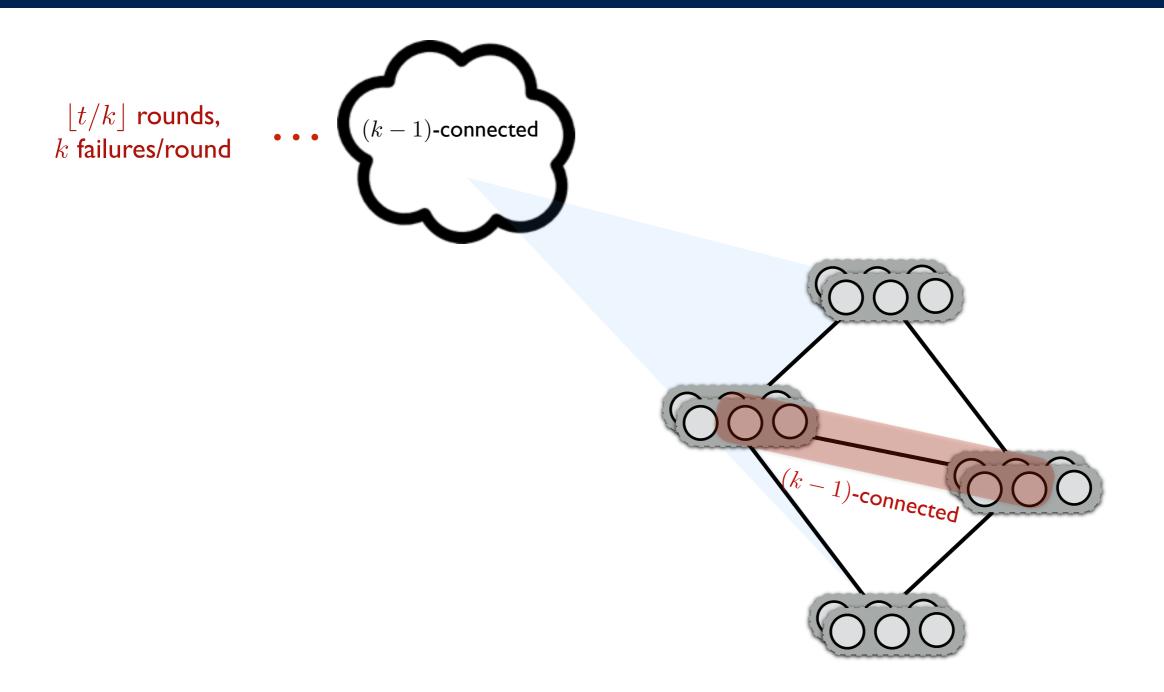


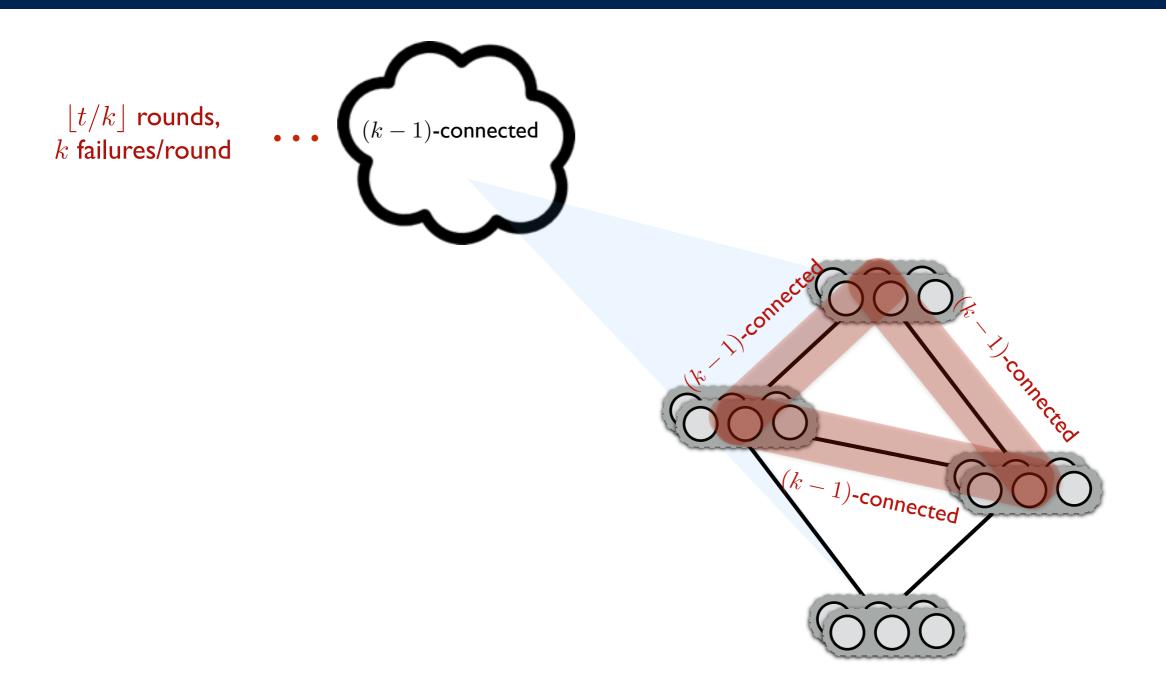


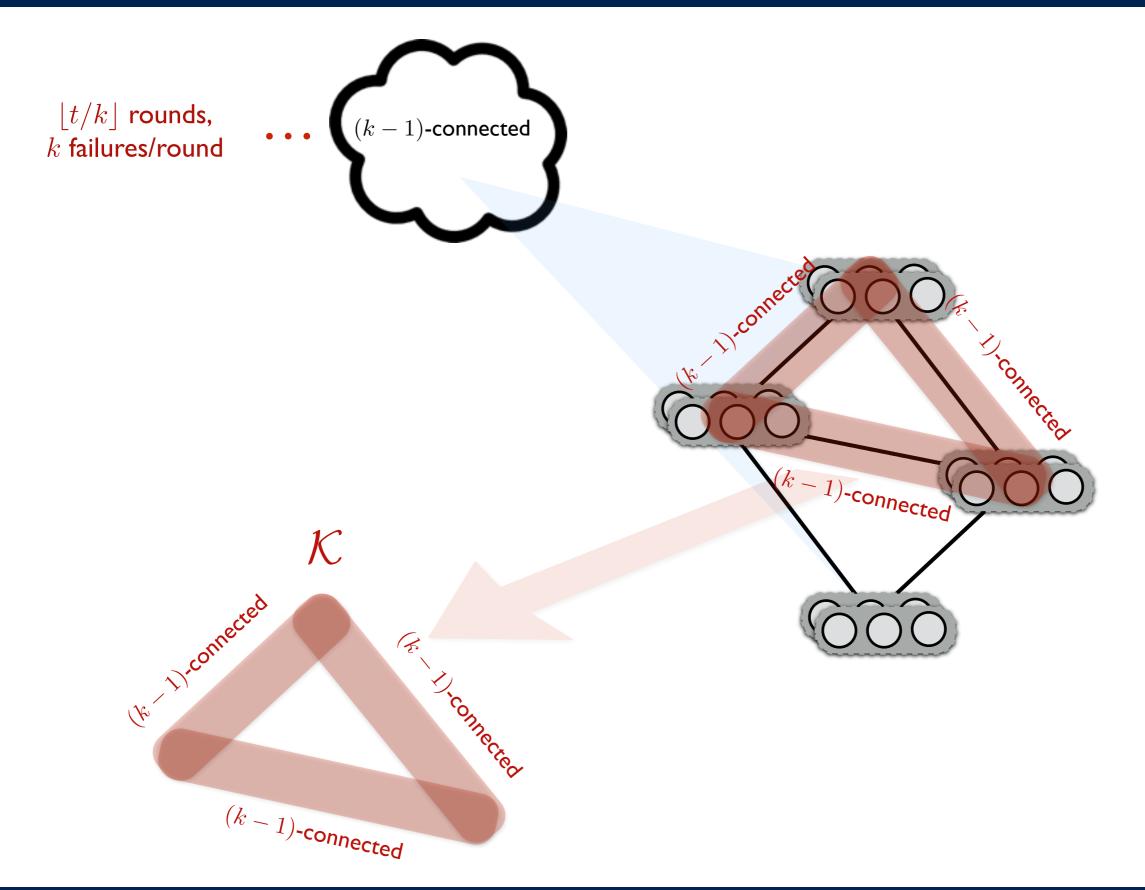


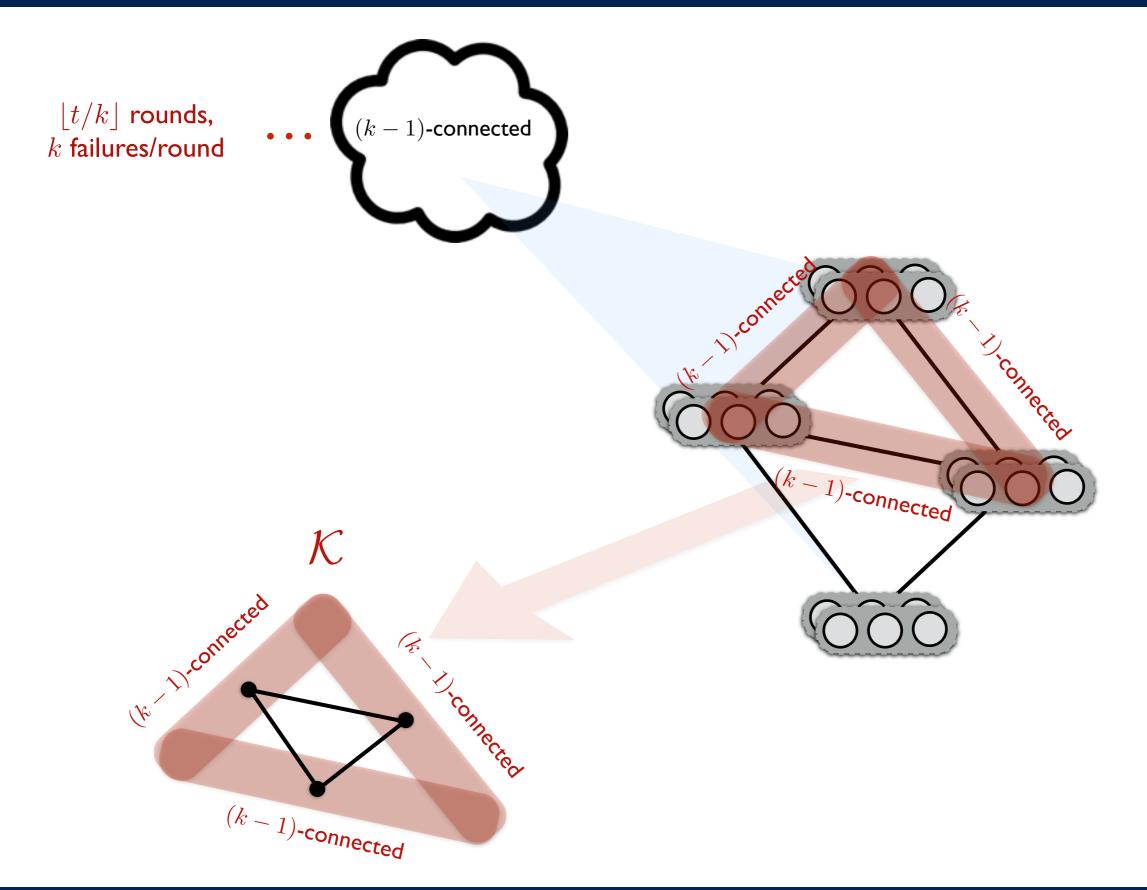


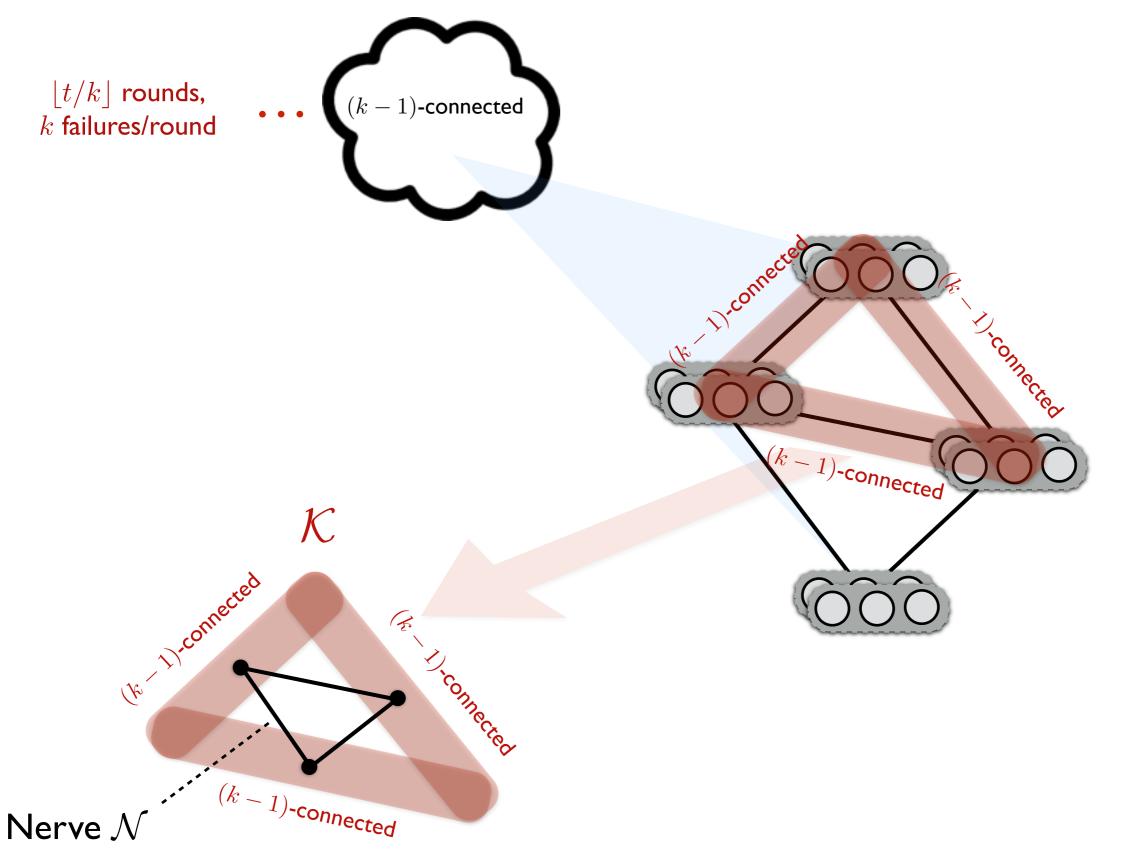


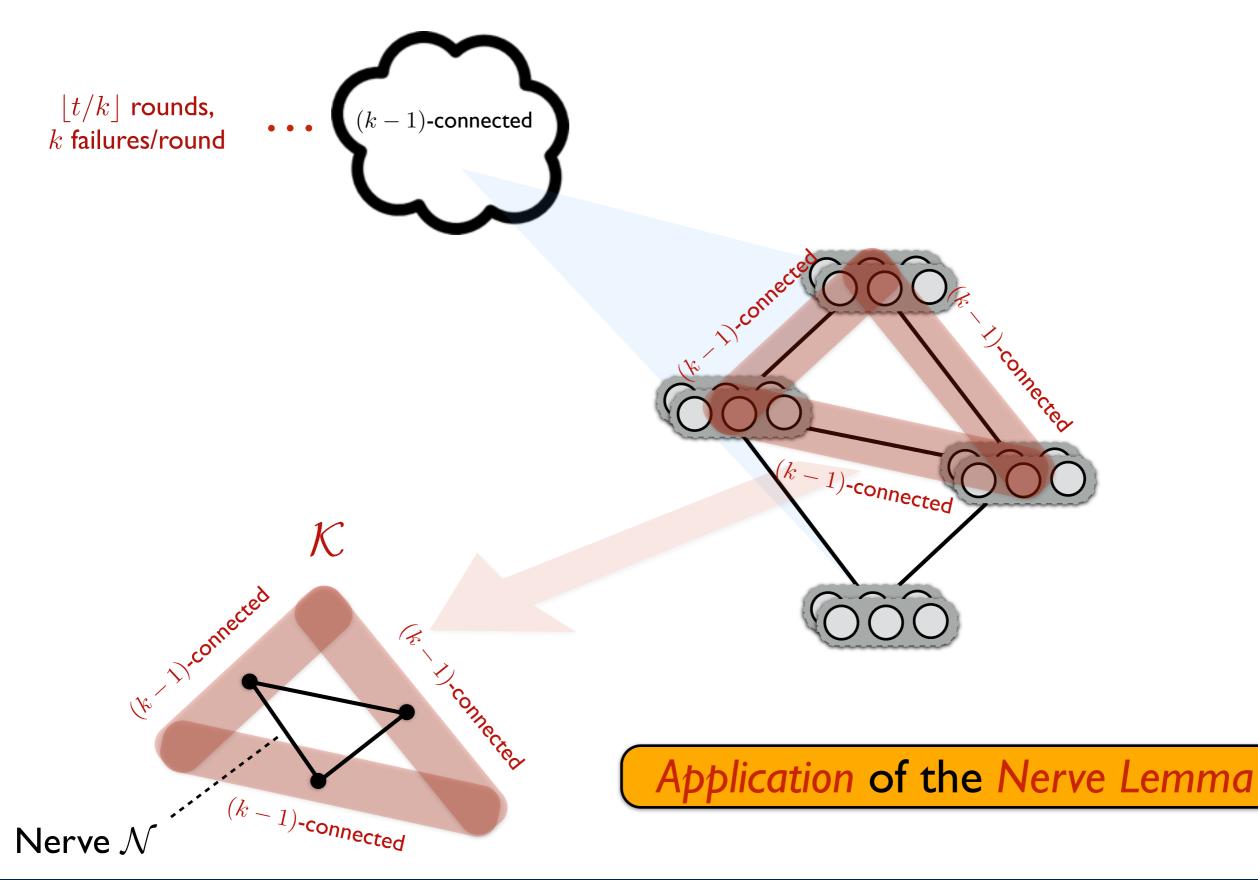


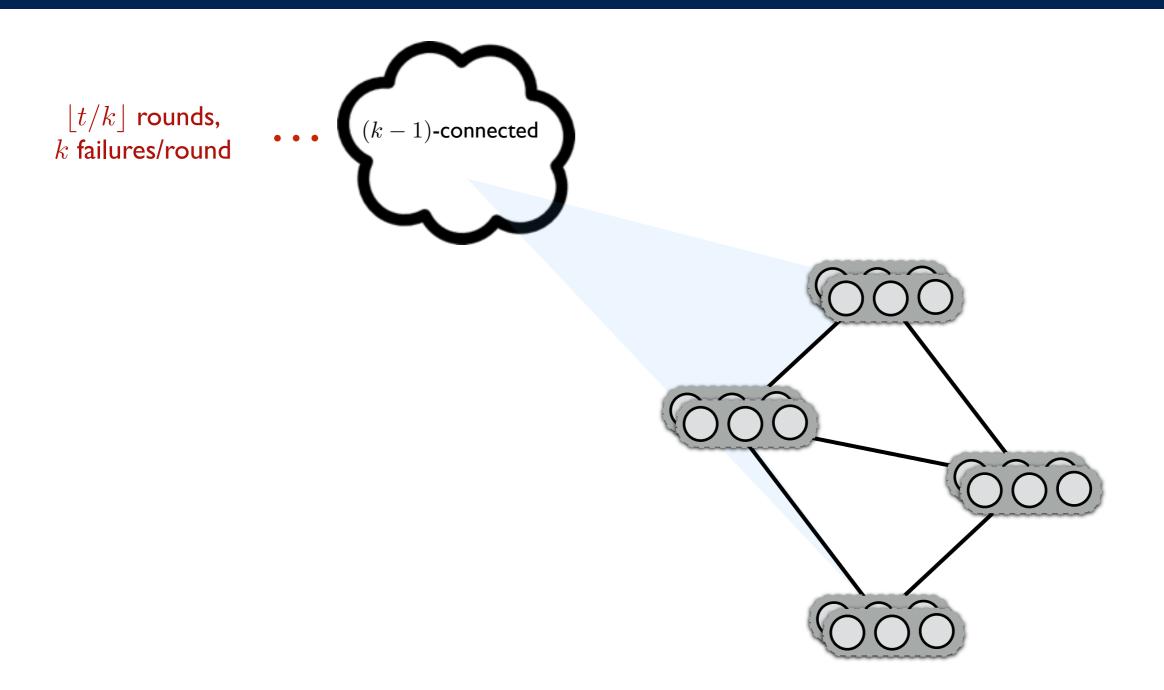


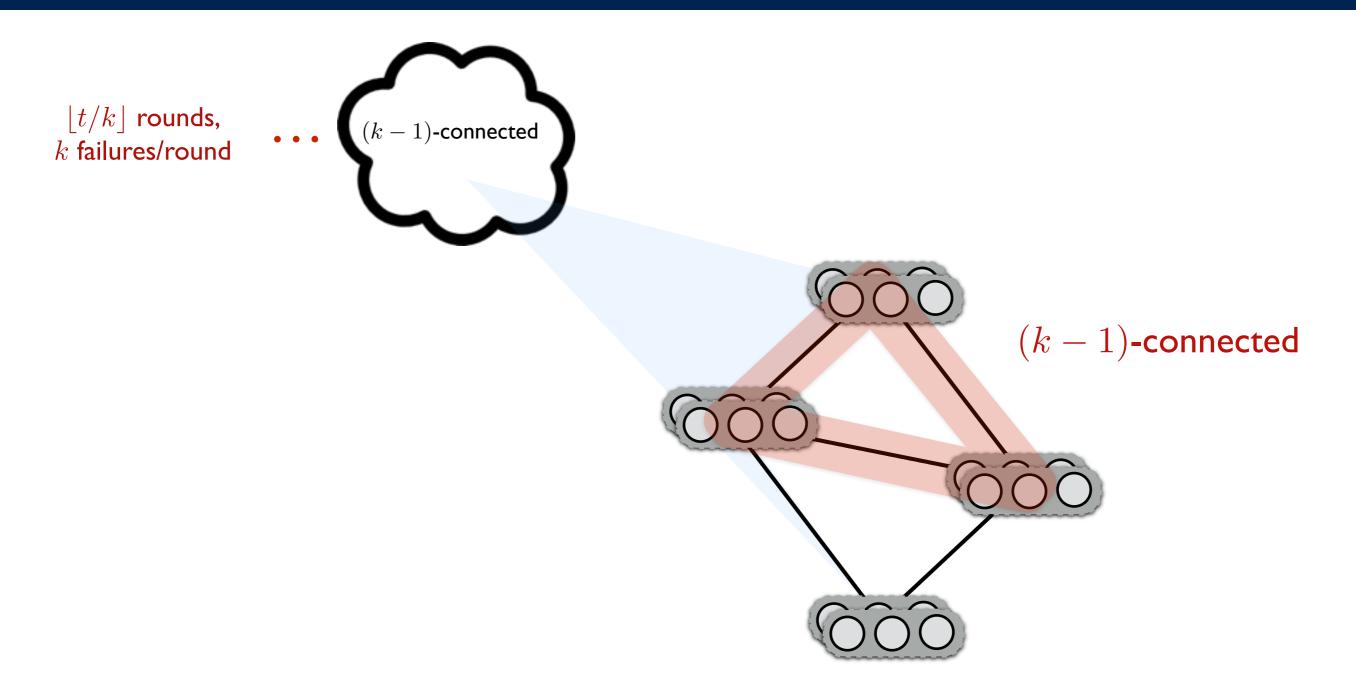


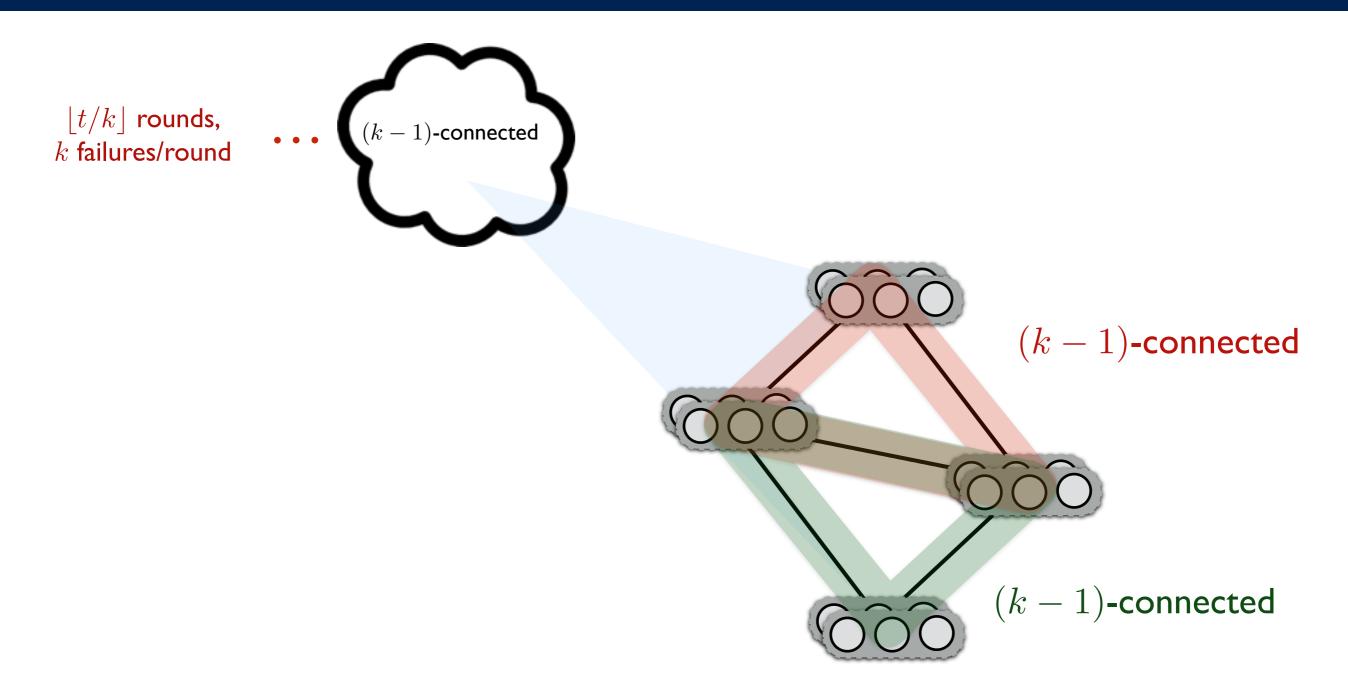


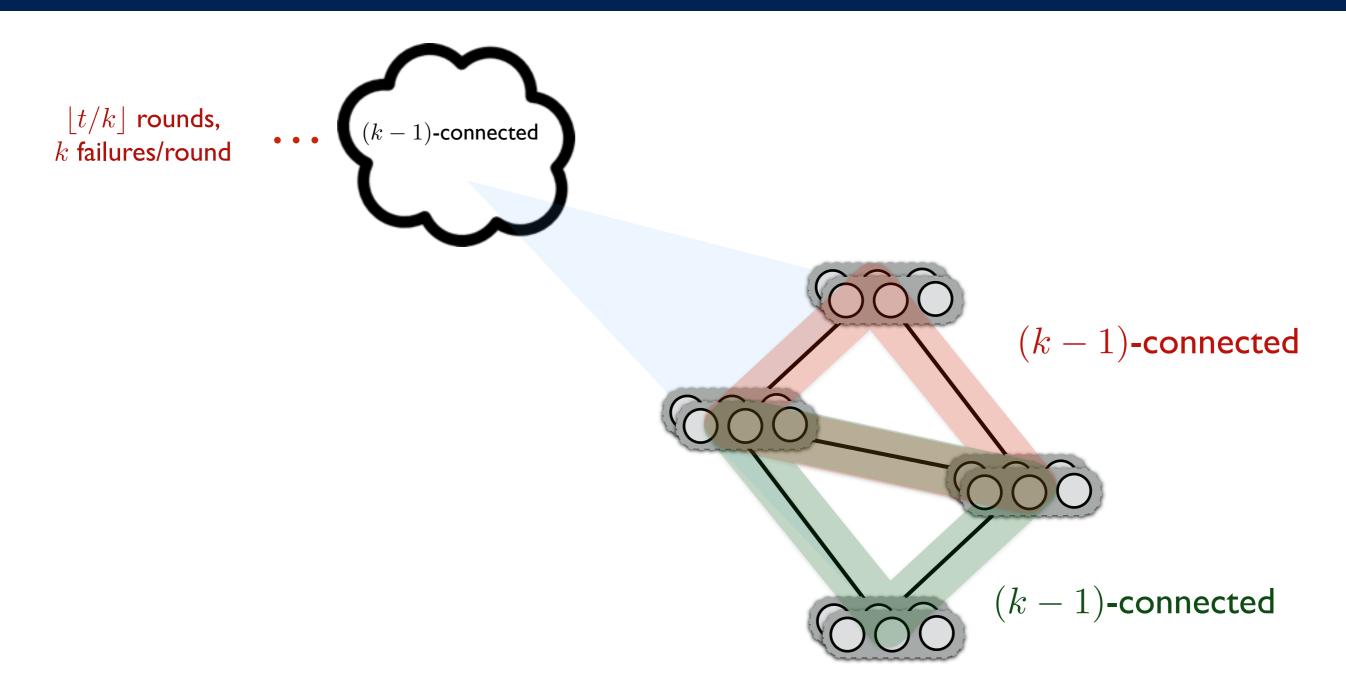




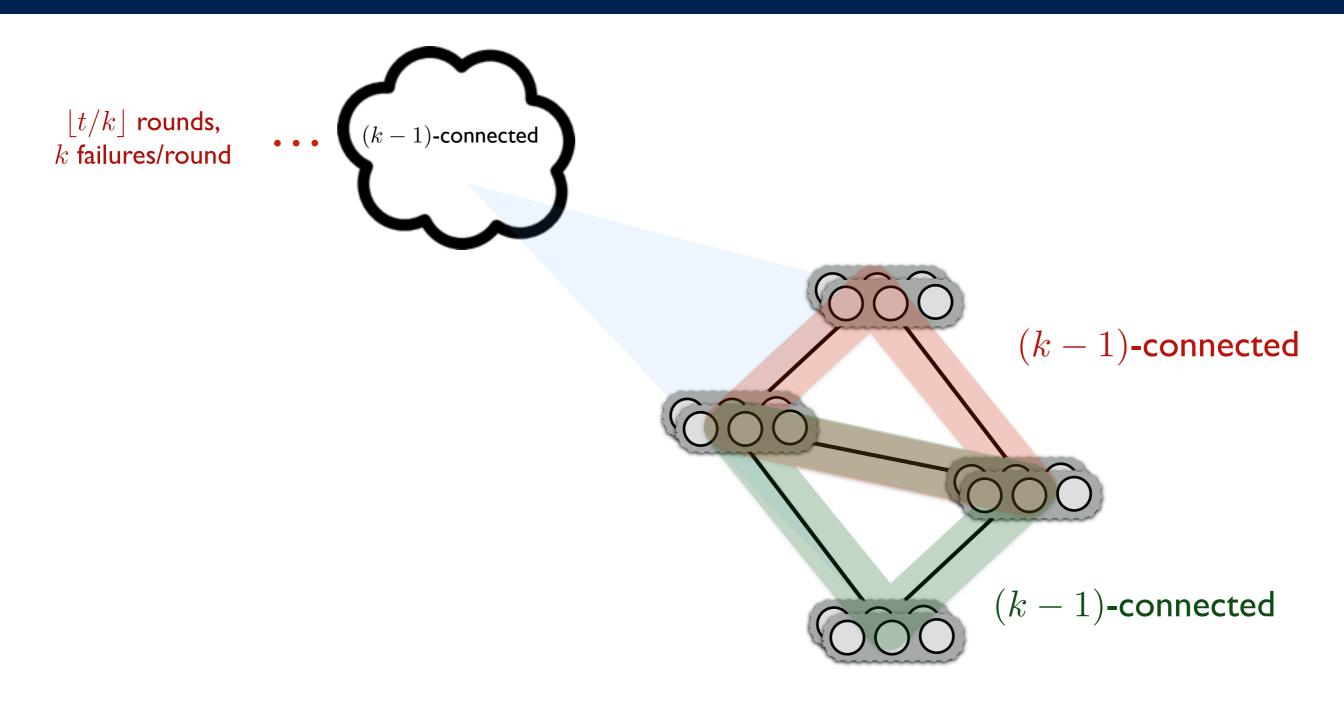








Extend throughout structure



Extend throughout structure

Subsequent applications of the Nerve Lemma

Strategy, Again

We match the bound with an *algorithm*

$$\mathcal{K}_{0} = \mathcal{I}^{*} \qquad \mathcal{K}_{1} = \mathcal{R}_{c}(\mathcal{K}_{0}, k) \qquad \mathcal{K}_{2} = \mathcal{R}_{c}(\mathcal{K}_{1}, k) \qquad \mathcal{K}_{3} = \mathcal{R}_{e}(\mathcal{K}_{2})$$

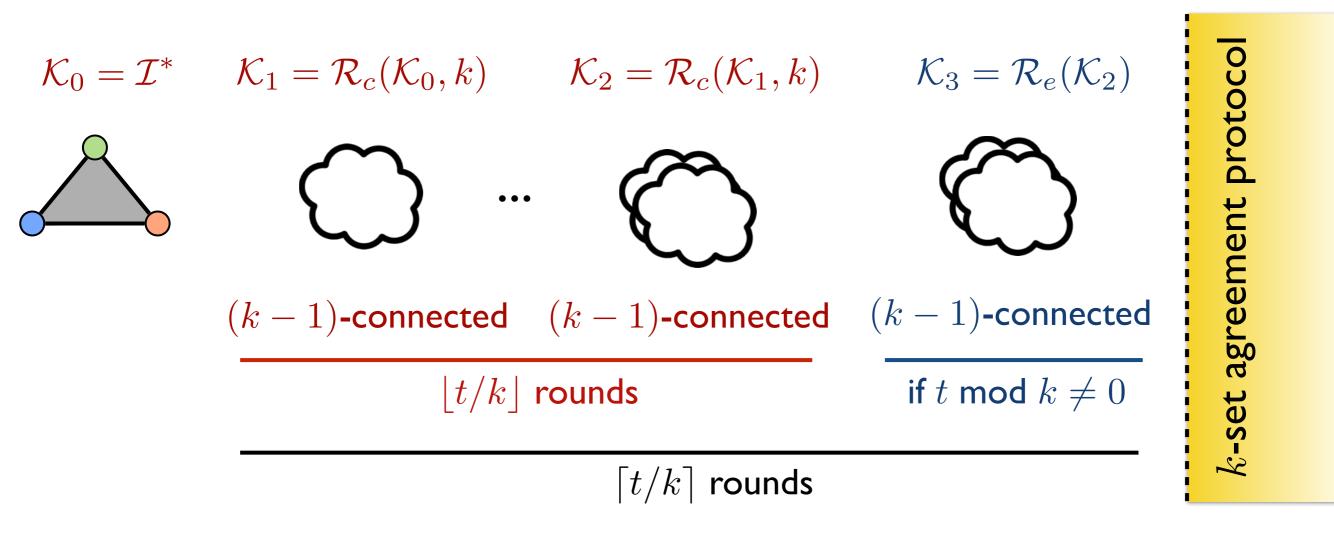
$$(k - 1) \text{-connected} \qquad (k - 1) \text{-connected} \qquad (k - 1) \text{-connected}$$

$$(k - 1) \text{-connected} \qquad (k - 1) \text{-connected} \qquad \text{if } t \mod k \neq 0$$

 $\lceil t/k \rceil$ rounds

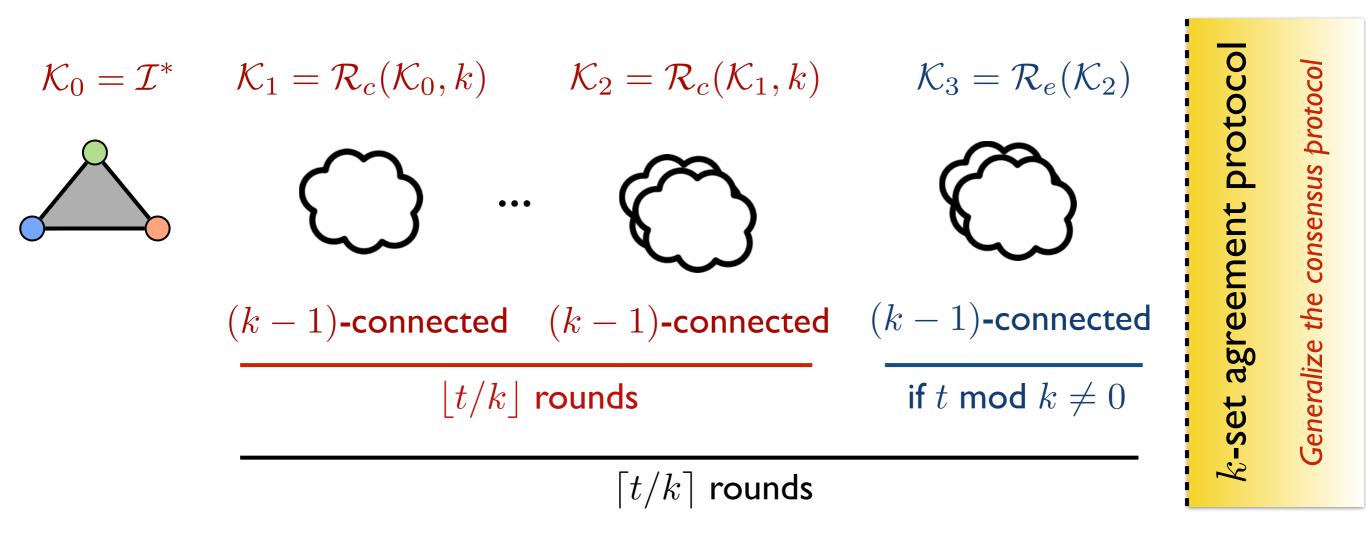
Strategy, Again

We match the bound with an algorithm



Strategy, Again

We match the bound with an algorithm



I. Introduction

2. Asynchronous Byzantine Systems

- 3. Synchronous Byzantine Systems
- 4. Conclusion & Future Work

- I. Introduction
- 2. Asynchronous Byzantine Systems
- 3. Synchronous Byzantine Systems

- Asynchronous Byzantine computability by *reduction*
 - I. Algorithmic primitives incorporated into the model

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast
- 2. A "layer of interpretation" that empowers the model

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast
- 2. A "layer of interpretation" that empowers the model
- 3. Mix of topological/algorithmic arguments, results fundamentally topological

• Asynchronous Byzantine computability by reduction

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast
- 2. A "layer of interpretation" that empowers the model
- 3. Mix of topological/algorithmic arguments, results fundamentally topological

• Asynchronous Byzantine computability by reduction

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast
- 2. A "layer of interpretation" that empowers the model
- 3. Mix of topological/algorithmic arguments, results fundamentally topological

• Synchronous Byzantine computability by shellability

I. Different layer of interpretation

• Asynchronous Byzantine computability by reduction

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast
- 2. A "layer of interpretation" that empowers the model
- 3. Mix of topological/algorithmic arguments, results fundamentally topological

- I. Different layer of interpretation
 - Round-by-round interpretation of messages

• Asynchronous Byzantine computability by *reduction*

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast
- 2. A "layer of interpretation" that empowers the model
- 3. Mix of topological/algorithmic arguments, results fundamentally topological

- I. Different layer of interpretation
 - Round-by-round interpretation of messages
 - We cannot validate messages from the last round

• Asynchronous Byzantine computability by *reduction*

- I. Algorithmic primitives incorporated into the model
 - Reliable Broadcast
- 2. A "layer of interpretation" that empowers the model
- 3. Mix of topological/algorithmic arguments, results fundamentally topological

- I. Different layer of interpretation
 - Round-by-round interpretation of messages
 - We cannot validate messages from the last round
- 2. Topological upper bound, algorithmic lower bound

Future Work

- Randomized Protocols
 - Many *impossible* problems (in a deterministic setting) now become *possible*

- Randomized Protocols
 - Many *impossible* problems (in a deterministic setting) now become *possible*
- Complexity
 - Particularly in asynchronous systems
 - Proofs are not constructive

- Randomized Protocols
 - Many *impossible* problems (in a deterministic setting) now become *possible*
- Complexity
 - Particularly in asynchronous systems
 - Proofs are not constructive
- Failure Detectors
 - Allow us to detect the crash of peer processes
 - Again, many *impossible* problems now become *possible*

Published:

- [1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine asynchronous systems. In *Proceedings of the 45th annual ACM Symposium on Theory of Computing*, STOC'13, pages 391–400, New York, NY, USA, 2013. ACM.
- [2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in Byzantine systems. *Distributed Computing*, pages 1–19, 2015.
- [3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine asynchronous systems. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, STOC '14, pages 704–713, New York, NY, USA, 2014. ACM.

ArXiV:

Published:

- [1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine asynchronous systems. In *Proceedings of the 45th annual ACM Symposium on Theory of Computing*, STOC'13, pages 391–400, New York, NY, USA, 2013. ACM.
- [2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in Byzantine systems. *Distributed Computing*, pages 1–19, 2015.
- [3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine asynchronous systems. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, STOC '14, pages 704–713, New York, NY, USA, 2014. ACM.

ArXiV:

Published:

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine asynchronous systems. In *Proceedings of the 45th annual ACM Symposium on Theory of Computing*, STOC'13, pages 391–400, New York, NY, USA, 2013. ACM.

- [2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in Byzantine systems. *Distributed Computing*, pages 1–19, 2015.
- [3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine asynchronous systems. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, STOC '14, pages 704–713, New York, NY, USA, 2014. ACM.

ArXiV:

Published:

- [1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine asynchronous systems. In *Proceedings of the 45th annual ACM Symposium on Theory of Computing*, STOC'13, pages 391–400, New York, NY, USA, 2013. ACM.
- [2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in Byzantine systems. *Distributed Computing*, pages 1–19, 2015.
- [3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine asynchronous systems. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, STOC '14, pages 704–713, New York, NY, USA, 2014. ACM.

ArXiV:

Published:

- [1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine asynchronous systems. In *Proceedings of the 45th annual ACM Symposium on Theory of Computing*, STOC'13, pages 391–400, New York, NY, USA, 2013. ACM.
- [2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in Byzantine systems. *Distributed Computing*, pages 1–19, 2015.
- [3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine asynchronous systems. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, STOC '14, pages 704–713, New York, NY, USA, 2014. ACM.

ArXiV:

Thank You!

hmendes@cs.rochester.edu