
Byzantine Computability and
Combinatorial Topology

Hammurabi Mendes
University of Rochester

Applied Algebraic Topology Research Network
November 10, 2015

1

joint work with Maurice Herlihy, ChristineTasson, done at Brown University

Outline

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

2

Outline

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

2

Introduction

3

Introduction

3

Tasks:

1 2

43

Introduction

3

Tasks:

1 2

43

Introduction

3

Tasks:
v0 v1 v2 v3Processes input values from a set{ }

1 2

43

Introduction

3

Tasks:

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }

input

1 2

43

Introduction

3

Tasks:

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

input

1 2

43

Introduction

3

Tasks:

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input

1 2

43

Introduction

3

Tasks:

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v2 v2

v2 v2

1 2

43

Introduction

3

Tasks:

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v1 v1

v1 v1

1 2

43

Introduction

3

Tasks:

Consensus task

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v1 v1

v1 v1

1 2

43

Introduction

3

Tasks:

Consensus task

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v1 v1

v1 v1

Protocol:
Algorithm solving tasks

1 2

43

Introduction

3

Tasks:

Consensus task

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v1 v1

v1 v1

Protocol:
Algorithm solving tasks

Motivation:
When are tasks solvable?

1 2

43

Introduction

4

Tasks:

Consensus task

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v2 v2

v2 v2

v1 v1

v1 v1

1 2

43

Introduction

4

Tasks:

Consensus task

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v2 v2

v2 v2

v1 v1

v1 v1

Motivation of the work:
When are tasks solvable?

1 2

43

Introduction

4

Tasks:

Consensus task

v0

v1

v2

v1

v0 v1 v2 v3Processes input values from a set{ }
Processes output values a single proposed value

1 2

43

input output

v2 v2

v2 v2

v1 v1

v1 v1

Motivation of the work:
When are tasks solvable?

Motivation of the talk:

Overview the research area for the AATRN
Create collaboration bridges

Introduction

• Message-passing

• Complete communication graph

• Senders reliably identified

• FIFO delivery for each pair

5

1 2

43

Tasks:

Introduction

• Message-passing

• Complete communication graph

• Senders reliably identified

• FIFO delivery for each pair

5

1 2

43
(1, a)

Tasks:

Introduction

• Message-passing

• Complete communication graph

• Senders reliably identified

• FIFO delivery for each pair

5

1 2

43
(1, a)

Tasks:

Trivial?

Introduction

• Message-passing

• Complete communication graph

• Senders reliably identified

• FIFO delivery for each pair

5

1 2

43
(1, a)

Tasks:

Trivial?Failures and (a)synchrony are the difficulties

Failures & Synchrony

6

Failures & Synchrony

6

Processes subject to failures

Failures & Synchrony

6

Processes subject to failures

Crash failures halting failures

Failures & Synchrony

6

Processes subject to failures

Crash failures

Byzantine failures

halting failures

arbitrary failures

Failures & Synchrony

6

Processes subject to failures

Messages subject to delivery semantics

Crash failures

Byzantine failures

halting failures

arbitrary failures

Failures & Synchrony

6

Processes subject to failures

Messages subject to delivery semantics

Crash failures

Byzantine failures

Synchronous systems round tick: messages delivered

halting failures

arbitrary failures

Failures & Synchrony

6

Processes subject to failures

Messages subject to delivery semantics

Crash failures

Byzantine failures

Asynchronous systems

Synchronous systems round tick: messages delivered

messages delivered eventually

halting failures

arbitrary failures

Failures & Synchrony

6

Processes subject to failures

Messages subject to delivery semantics

Crash failures

Byzantine failures

Asynchronous systems

Synchronous systems round tick: messages delivered

messages delivered eventually

halting failures

arbitrary failures*

*
*

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

4

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

4

of processes

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

4

of processes known max # of
Byzantine procs

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

(2, c)

4

of processes known max # of
Byzantine procs

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

(2, c)

4

of processes known max # of
Byzantine procs

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

(2, c)

4

Don’t know when it is delivered

of processes known max # of
Byzantine procs

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

(2, c)

4

Don’t know when it is delivered
When it does, the sender is correct

of processes known max # of
Byzantine procs

Asynchrony + Failures

7

3

2

1

n = 4, t = 1

Asynchronous Systems,
Byzantine Failures

(2, c)

44

Don’t know when it is delivered
When it does, the sender is correct

of processes known max # of
Byzantine procs

Reliable
Broadcast

8

The Equivocation Issue

9

Call it “broadcast” but…

1

The Equivocation Issue

9

4

3

2
Call it “broadcast” but…

1

The Equivocation Issue

9

4

3

2

(1, c)(1, d)

Call it “broadcast” but…

1

The Equivocation Issue

9

4

3

2

(1, c)

(1, d)

Call it “broadcast” but…

1

The Equivocation Issue

9

4

3

2

(1, c)

(1, d)

Call it “broadcast” but…

1

The Equivocation Issue

9

4

3

2

(1, c)

(1, d)

✘

Call it “broadcast” but…

1

The Equivocation Issue

9

4

3

2

(1, c)

(1, d)

✘

Using a primitive called Reliable Broadcast

Call it “broadcast” but…

1

The Equivocation Issue

9

4

3

2

(1, c)

(1, d)

✘

Message contents are consistent
Using a primitive called Reliable Broadcast

Call it “broadcast” but…

Full-Information
Protocols

10

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

Protocol = distributed algorithm

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

initial state:
input

Protocol = distributed algorithm

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

initial state:
input

Protocol = distributed algorithm

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

initial state:
input

Protocol = distributed algorithm

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

initial state:
input

wait as much
as you can…

Protocol = distributed algorithm

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

initial state:
input

wait as much
as you can…

exchange
states

Protocol = distributed algorithm

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

initial state:
input

wait as much
as you can…

exchange
states

decide

Protocol = distributed algorithm

Full-Information Protocols

11

s � Ii

JSV r : 1 � R HS
7IRH s ZME�VIPMEFPI�FVSEHGEWX
[LMPI PIWW�XLER (n + 1) � t QIWWEKIW HS

6IGIMZI�ER r�VSYRH�QIWWEKI M
s � s � {M}

VIXYVR �(s)

initial state:
input

wait as much
as you can…

exchange
states

decide

Protocol = distributed algorithm

Modeling
Tasks

12

Tasks and Simplicial Complexes

13

Tasks modeled as simplicial complexes

Tasks and Simplicial Complexes

13

Tasks modeled as simplicial complexes

Solvability in terms of topological properties

Tasks and Simplicial Complexes

13

Tasks modeled as simplicial complexes

Solvability in terms of topological properties

Let’s start with crash failures

Many Simplexes → Simplicial Complex

14

(P0, v0)

(P1, v1)(P2, v2)

Many Simplexes → Simplicial Complex

14

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

Many Simplexes → Simplicial Complex

14

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)(P1, v4)

Many Simplexes → Simplicial Complex

14

I

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

(input complex)

Many Simplexes → Simplicial Complex

14

I

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

{(P0, v0), (P1, v0), (P2, v0)}

(input complex)

Many Simplexes → Simplicial Complex

14

I

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

(input complex)

Many Simplexes → Simplicial Complex

14

OI

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

(input complex) (output complex)

Many Simplexes → Simplicial Complex

14

OI

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

(input complex) (output complex)
∆

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

15

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)

...

(P1, v4)

...

{(P0, v0), (P1, v0), (P2, v0)}

{(P0, v2), (P1, v2), (P2, v2)}

8LI�QET �

OI (input complex) (output complex)

Formal Specification

16

(I,O,∆)In the crash-failure model:

Formal Specification

16

(I,O,∆)In the crash-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

Formal Specification

16

(I,O,∆)In the crash-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR
HMQ(σ) = n

Formal Specification

16

(I,O,∆)In the crash-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

Formal Specification

16

(I,O,∆)In the crash-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

Formal Specification

16

(I,O,∆)In the crash-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

� � �(�) MJ�½RMWLMRK�[MXL � ���

Formal Specification

16

(I,O,∆)In the crash-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

� � �(�) MJ�½RMWLMRK�[MXL � ���
��� MW�½RI�[LIR�WXEVXMRK�[MXL �

Solvability in Terms of Topology

17

Solvability in Terms of Topology

17

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Abstract. We give necessary and sufficient combinatorial conditions characterizing the class of
decision tasks that can be solved in a wait-free manner by asynchronous processes that communicate
by reading and writing a shared memory.

We introduce a new formalism for tasks, based on notions from classical algebraic and combinato-
rial topology, in which a task’s possible input and output values are each associated with high-
dimensional geometric structures called simplicial complexes. We characterize computability in terms
of the topological properties of these complexes. This characterization has a surprising geometric
interpretation: a task is solvable if and only if the complex representing the task’s allowable inputs
can be mapped to the complex representing the task’s allowable outputs by a function satisfying
certain simple regularity properties.

Our formalism thus replaces the “operational” notion of a wait-free decision task, expressed in
terms of interleaved computations unfolding in time, by a static “combinatorial” description
expressed in terms of relations among topological spaces. This allows us to exploit powerful theorems
from the classic literature on algebraic and combinatorial topology. The approach yields the first
impossibility results for several long-standing open problems in distributed computing, such as the
“renaming” problem of Attiya et al., and the “k-set agreement” problem of Chaudhuri.

Preliminary versions of these results appeared as HERLIHY, M. P., AND SHAVIT, N. 1993. The
asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp. 111–120,
and HERLIHY, M. P., AND SHAVIT, N. 1994. A simple constructive computability theorem for wait-free
computation. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (Montreal,
Que., Canada, May 23–25). ACM, New York, pp. 243–252.
The work of M. Herlihy was supported by NSF grant DMS 95-05949.
The work of N. Shavit was supported by NSF grant CCR 95-20298 and Israeli Academy of Science
grant Number 0361-88.
Authors’ addresses: M. Herlihy, Computer Science Department, Brown University, Box 1910,
Providence, R. I. 02912; N. Shavit, Computer Science Department, Tel-Aviv University, Tel-Aviv
69978, Israel.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0858 $05.00

Journal of the ACM, Vol. 46, No. 6, November 1999, pp. 858 –923.

1999!

Solvability in Terms of Topology

17

Crash-failure task is solvable if and only if

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Abstract. We give necessary and sufficient combinatorial conditions characterizing the class of
decision tasks that can be solved in a wait-free manner by asynchronous processes that communicate
by reading and writing a shared memory.

We introduce a new formalism for tasks, based on notions from classical algebraic and combinato-
rial topology, in which a task’s possible input and output values are each associated with high-
dimensional geometric structures called simplicial complexes. We characterize computability in terms
of the topological properties of these complexes. This characterization has a surprising geometric
interpretation: a task is solvable if and only if the complex representing the task’s allowable inputs
can be mapped to the complex representing the task’s allowable outputs by a function satisfying
certain simple regularity properties.

Our formalism thus replaces the “operational” notion of a wait-free decision task, expressed in
terms of interleaved computations unfolding in time, by a static “combinatorial” description
expressed in terms of relations among topological spaces. This allows us to exploit powerful theorems
from the classic literature on algebraic and combinatorial topology. The approach yields the first
impossibility results for several long-standing open problems in distributed computing, such as the
“renaming” problem of Attiya et al., and the “k-set agreement” problem of Chaudhuri.

Preliminary versions of these results appeared as HERLIHY, M. P., AND SHAVIT, N. 1993. The
asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp. 111–120,
and HERLIHY, M. P., AND SHAVIT, N. 1994. A simple constructive computability theorem for wait-free
computation. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (Montreal,
Que., Canada, May 23–25). ACM, New York, pp. 243–252.
The work of M. Herlihy was supported by NSF grant DMS 95-05949.
The work of N. Shavit was supported by NSF grant CCR 95-20298 and Israeli Academy of Science
grant Number 0361-88.
Authors’ addresses: M. Herlihy, Computer Science Department, Brown University, Box 1910,
Providence, R. I. 02912; N. Shavit, Computer Science Department, Tel-Aviv University, Tel-Aviv
69978, Israel.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0858 $05.00

Journal of the ACM, Vol. 46, No. 6, November 1999, pp. 858 –923.

1999!

Solvability in Terms of Topology

17

Crash-failure task is solvable if and only if
GSRXMRYSYW�QET f : |I| � |O| GEVVMIH�F] �

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Abstract. We give necessary and sufficient combinatorial conditions characterizing the class of
decision tasks that can be solved in a wait-free manner by asynchronous processes that communicate
by reading and writing a shared memory.

We introduce a new formalism for tasks, based on notions from classical algebraic and combinato-
rial topology, in which a task’s possible input and output values are each associated with high-
dimensional geometric structures called simplicial complexes. We characterize computability in terms
of the topological properties of these complexes. This characterization has a surprising geometric
interpretation: a task is solvable if and only if the complex representing the task’s allowable inputs
can be mapped to the complex representing the task’s allowable outputs by a function satisfying
certain simple regularity properties.

Our formalism thus replaces the “operational” notion of a wait-free decision task, expressed in
terms of interleaved computations unfolding in time, by a static “combinatorial” description
expressed in terms of relations among topological spaces. This allows us to exploit powerful theorems
from the classic literature on algebraic and combinatorial topology. The approach yields the first
impossibility results for several long-standing open problems in distributed computing, such as the
“renaming” problem of Attiya et al., and the “k-set agreement” problem of Chaudhuri.

Preliminary versions of these results appeared as HERLIHY, M. P., AND SHAVIT, N. 1993. The
asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp. 111–120,
and HERLIHY, M. P., AND SHAVIT, N. 1994. A simple constructive computability theorem for wait-free
computation. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (Montreal,
Que., Canada, May 23–25). ACM, New York, pp. 243–252.
The work of M. Herlihy was supported by NSF grant DMS 95-05949.
The work of N. Shavit was supported by NSF grant CCR 95-20298 and Israeli Academy of Science
grant Number 0361-88.
Authors’ addresses: M. Herlihy, Computer Science Department, Brown University, Box 1910,
Providence, R. I. 02912; N. Shavit, Computer Science Department, Tel-Aviv University, Tel-Aviv
69978, Israel.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0858 $05.00

Journal of the ACM, Vol. 46, No. 6, November 1999, pp. 858 –923.

1999!

Solvability in Terms of Topology

17

Crash-failure task is solvable if and only if
GSRXMRYSYW�QET f : |I| � |O| GEVVMIH�F] �

The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Abstract. We give necessary and sufficient combinatorial conditions characterizing the class of
decision tasks that can be solved in a wait-free manner by asynchronous processes that communicate
by reading and writing a shared memory.

We introduce a new formalism for tasks, based on notions from classical algebraic and combinato-
rial topology, in which a task’s possible input and output values are each associated with high-
dimensional geometric structures called simplicial complexes. We characterize computability in terms
of the topological properties of these complexes. This characterization has a surprising geometric
interpretation: a task is solvable if and only if the complex representing the task’s allowable inputs
can be mapped to the complex representing the task’s allowable outputs by a function satisfying
certain simple regularity properties.

Our formalism thus replaces the “operational” notion of a wait-free decision task, expressed in
terms of interleaved computations unfolding in time, by a static “combinatorial” description
expressed in terms of relations among topological spaces. This allows us to exploit powerful theorems
from the classic literature on algebraic and combinatorial topology. The approach yields the first
impossibility results for several long-standing open problems in distributed computing, such as the
“renaming” problem of Attiya et al., and the “k-set agreement” problem of Chaudhuri.

Preliminary versions of these results appeared as HERLIHY, M. P., AND SHAVIT, N. 1993. The
asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp. 111–120,
and HERLIHY, M. P., AND SHAVIT, N. 1994. A simple constructive computability theorem for wait-free
computation. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (Montreal,
Que., Canada, May 23–25). ACM, New York, pp. 243–252.
The work of M. Herlihy was supported by NSF grant DMS 95-05949.
The work of N. Shavit was supported by NSF grant CCR 95-20298 and Israeli Academy of Science
grant Number 0361-88.
Authors’ addresses: M. Herlihy, Computer Science Department, Brown University, Box 1910,
Providence, R. I. 02912; N. Shavit, Computer Science Department, Tel-Aviv University, Tel-Aviv
69978, Israel.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0858 $05.00

Journal of the ACM, Vol. 46, No. 6, November 1999, pp. 858 –923.

1999!

respects �

Outline

18

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Outline

18

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Adversarial Model

19

Adversarial Model

19

Byzantine processes

Adversarial Model

19

Byzantine processes
YT�XS t GLSWIR�F] EHZIVWEV]

Adversarial Model

19

Byzantine processes

Non-faulty processes output values...

YT�XS t GLSWIR�F] EHZIVWEV]

Adversarial Model

19

Byzantine processes

Non-faulty processes output values...

consistent

YT�XS t GLSWIR�F] EHZIVWEV]

Adversarial Model

19

Byzantine processes

Non-faulty processes output values...

...input values of non-faulty processes

consistent

YT�XS t GLSWIR�F] EHZIVWEV]

Adversarial Model

19

Byzantine processes

Non-faulty processes output values...

...input values of non-faulty processes

consistent

∆

YT�XS t GLSWIR�F] EHZIVWEV]

Adversarial Model

19

Byzantine processes

Non-faulty processes output values...

...input values of non-faulty processes

consistent

∆

YT�XS t GLSWIR�F] EHZIVWEV]

Adversarial Model

19

Byzantine processes

Non-faulty processes output values...

...input values of non-faulty processes

consistent

∆

YT�XS t GLSWIR�F] EHZIVWEV]

� GSRWXVEMRW�RSR�JEYPX]�TVSGIWWIW SRP]

Adversarial Model

19

Byzantine processes

Non-faulty processes output values...

...input values of non-faulty processes

consistent

∆

YT�XS t GLSWIR�F] EHZIVWEV]

� GSRWXVEMRW�RSR�JEYPX]�TVSGIWWIW SRP]

I ERH O VITVIWIRX�RSR�JEYPX]�TVSGIWWIW SRP]

What about Equivocation?

20

What about Equivocation?

20

Different information to different processes?

What about Equivocation?

20

Different information to different processes?✘

What about Equivocation?

20

Different information to different processes?✘
Reliable Broadcast!

What about Equivocation?

20

Different information to different processes?✘
Reliable Broadcast!

Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Reliable Broadcast!
Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

HMQ(σ) = n− t

Reliable Broadcast!
Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

HMQ(σ) = n− t
(n

+ 1)
� t T

VSG
W�

Reliable Broadcast!
Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Reliable Broadcast!
Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Reliable Broadcast!

(P3, v3)

Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Reliable Broadcast!

(P3, v3)

Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Reliable Broadcast!

(P3, v3)

Real problem is:

?

?

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Reliable Broadcast!

(P3, v3)

Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Reliable Broadcast!

(P3, v3)

(P4, v4)

Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Byzantine processes
pick fake inputs...

Reliable Broadcast!

(P3, v3)

(P4, v4)

Real problem is:

What about Equivocation?

20

Different information to different processes?✘

(P0, v0)

(P1, v1)

(P2, v2)

Byzantine processes
pick fake inputs...

... yet behave “correctly”

Reliable Broadcast!

(P3, v3)

(P4, v4)

Real problem is:

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR
HMQ(σ) = n

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR
HMQ(σ) = n

(non-faulty)

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR
HMQ(σ) = n

(non-faulty) -RMXMEPP] (n + 1) TVSGW� FYX�ER]
WIX�SJ 0 . . . t SJ�XLIQ�EVI�JEYPX]

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

(non-faulty) -RMXMEPP] (n + 1) TVSGW� FYX�ER]
WIX�SJ 0 . . . t SJ�XLIQ�EVI�JEYPX]

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

(non-faulty)

(non-faulty)

-RMXMEPP] (n + 1) TVSGW� FYX�ER]
WIX�SJ 0 . . . t SJ�XLIQ�EVI�JEYPX]

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

� � �(�) MJ�½RMWLMRK�[MXL � ���
��� MW�½RI�[LIR�WXEVXMRK�[MXL �

(non-faulty)

(non-faulty)

-RMXMEPP] (n + 1) TVSGW� FYX�ER]
WIX�SJ 0 . . . t SJ�XLIQ�EVI�JEYPX]

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

� � �(�) MJ�½RMWLMRK�[MXL � ���
��� MW�½RI�[LIR�WXEVXMRK�[MXL �

(non-faulty)

(non-faulty)

(non-faulty)

-RMXMEPP] (n + 1) TVSGW� FYX�ER]
WIX�SJ 0 . . . t SJ�XLIQ�EVI�JEYPX]

Formal Specification

21

(I,O,∆)In the Byzantine-failure model:

� � I MJ � MW�ER�MRMXMEP�GSR½KYVEXMSR

� � O MJ � MW�E�½REP�GSR½KYVEXMSR

HMQ(σ) = n

HMQ(σ) ≥ n− t

� � �(�) MJ�½RMWLMRK�[MXL � ���
��� MW�½RI�[LIR�WXEVXMRK�[MXL �

(non-faulty)

(non-faulty)

(non-faulty)

(non-faulty)

-RMXMEPP] (n + 1) TVSGW� FYX�ER]
WIX�SJ 0 . . . t SJ�XLIQ�EVI�JEYPX]

When are these
Byzantine tasks solvable?

22

Reduction to Crash-Failure Tasks

23

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI
�

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

MXW HYEP GVEWL�JEMPYVI�XEWO (Ĩ, Õ, �̃) WSPZEFPI�
�

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

MXW HYEP GVEWL�JEMPYVI�XEWO (Ĩ, Õ, �̃) WSPZEFPI�
�

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

MXW HYEP GVEWL�JEMPYVI�XEWO (Ĩ, Õ, �̃) WSPZEFPI�
�

translated from (I, O, �)

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

MXW HYEP GVEWL�JEMPYVI�XEWO (Ĩ, Õ, �̃) WSPZEFPI�
�

In [STOC14], we show what is the dual task,

translated from (I, O, �)

Reduction to Crash-Failure Tasks

23

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

MXW HYEP GVEWL�JEMPYVI�XEWO (Ĩ, Õ, �̃) WSPZEFPI�
�

In [STOC14], we show what is the dual task,

and how the equivalence holds

translated from (I, O, �)

Algorithmic methods*
used to prove theorem

24

Algorithmic methods*
used to prove theorem

24

* simulations, reductions [STOC14]

Reduction to Crash-Failure Tasks

25

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

MXW HYEP GVEWL�JEMPYVI�XEWO (Ĩ, Õ, �̃) WSPZEFPI�
�

Reduction to Crash-Failure Tasks

25

Theorem: (Equivalence Theorem)

% &]^ERXMRI�XEWO (I, O, �) WSPZEFPI

MXW HYEP GVEWL�JEMPYVI�XEWO (Ĩ, Õ, �̃) WSPZEFPI�
�

TVSXSGSP � � GSRXMRYSYW f : |Ĩ| � |Õ| GEVVMIH�F] �̃

�

Colorless
Tasks

26

Colorless Tasks

27

Colorless Tasks

27

7XEVX�[MXL�ER]�SJ

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

(k = 2)

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

v0

v1

v2

v3(k = 2)

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

v0

v1

v2

v3

v1

I∗

(k = 2)

v0

v2

v3

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

v0

v1

v2

v3

v1
v1

I∗ O∗

(k = 2)

v0

v2

v3

v0

v2

v3

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

v0

v1

v2

v3

v1
v1

I∗ O∗

∆∗ = WOIPk−1

(k = 2)

1v0

v2

v3

v0

v2

v3

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

v0

v1

v2

v3

v1
v1

I∗ O∗

∆∗ = WOIPk−1

(k = 2)

1v0

v2

v3

v0

v2

v3

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

v0

v1

v2

v3

v1
v1

I∗ O∗

∆∗ = WOIPk−1

(k = 2)

1

7MQTPI\IW�SJ HMQ � 1

v0

v2

v3

v0

v2

v3

Colorless Tasks

27

v0

v1

v2

v3
7XEVX�[MXL�ER]�SJ *MRMWL�[MXL � k SJ

v0

v1

v2

v3

v1
v1

I∗ O∗

∆∗ = WOIPk−1

(k = 2)

1

7MQTPI\IW�SJ HMQ � 1

7XVMGX k�WIX�EKVIIQIRX

v0

v2

v3

v0

v2

v3

Theorems for Colorless Tasks

28

Theorems for Colorless Tasks

28

Theorem:
8LI�WXVMGX (t + 1)�WIX�EKVIIQIRX (I�, O�, WOIPt) LEW�E
t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP MJJ

Theorems for Colorless Tasks

28

Theorem:
8LI�WXVMGX (t + 1)�WIX�EKVIIQIRX (I�, O�, WOIPt) LEW�E
t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP MJJ

n + 1 > t(HMQ(I�) + 2) SV HMQ(I�) � t�

Theorems for Colorless Tasks

28

Theorem:
8LI�WXVMGX (t + 1)�WIX�EKVIIQIRX (I�, O�, WOIPt) LEW�E
t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP MJJ

n + 1 > t(HMQ(I�) + 2) SV HMQ(I�) � t�

Theorems for Colorless Tasks

28

Theorem:
8LI�WXVMGX (t + 1)�WIX�EKVIIQIRX (I�, O�, WOIPt) LEW�E
t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP MJJ

n + 1 > t(HMQ(I�) + 2) SV HMQ(I�) � t�

(application of our Equivalence Theorem)

Theorems for Colorless Tasks

29

Theorems for Colorless Tasks

29

Theorem:
*SV�ER]�GSPSVPIWW�XEWO (I�, O�, ��)� MJ

Theorems for Colorless Tasks

29

Theorem:
*SV�ER]�GSPSVPIWW�XEWO (I�, O�, ��)� MJ

�� n + 1 > t(HMQ(I�) + 2)

Theorems for Colorless Tasks

29

Theorem:
*SV�ER]�GSPSVPIWW�XEWO (I�, O�, ��)� MJ

�� n + 1 > t(HMQ(I�) + 2)
�� � GSRXMRYSYW�QET f : | WOIPt(I�)| � |O�| GEVVMIH�F] ���

Theorems for Colorless Tasks

29

Theorem:
*SV�ER]�GSPSVPIWW�XEWO (I�, O�, ��)� MJ

�� n + 1 > t(HMQ(I�) + 2)
�� � GSRXMRYSYW�QET f : | WOIPt(I�)| � |O�| GEVVMIH�F] ���

[I�LEZI�E t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP�

Theorems for Colorless Tasks

29

Theorem:
*SV�ER]�GSPSVPIWW�XEWO (I�, O�, ��)� MJ

�� n + 1 > t(HMQ(I�) + 2)
�� � GSRXMRYSYW�QET f : | WOIPt(I�)| � |O�| GEVVMIH�F] ���

[I�LEZI�E t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP�

Proof sketch:

Theorems for Colorless Tasks

29

Theorem:
*SV�ER]�GSPSVPIWW�XEWO (I�, O�, ��)� MJ

�� n + 1 > t(HMQ(I�) + 2)
�� � GSRXMRYSYW�QET f : | WOIPt(I�)| � |O�| GEVVMIH�F] ���

[I�LEZI�E t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP�

Proof sketch:

�� 6YR�XLI�&]^ERXMRI�WXVMGX (t + 1)�WIX�EKVIIQIRX�TVSXSGSP�
PERHMRK�SR�E�WMQTPI\�MR WOIPt(I�)�

Theorems for Colorless Tasks

29

Theorem:
*SV�ER]�GSPSVPIWW�XEWO (I�, O�, ��)� MJ

�� n + 1 > t(HMQ(I�) + 2)
�� � GSRXMRYSYW�QET f : | WOIPt(I�)| � |O�| GEVVMIH�F] ���

[I�LEZI�E t�VIWMPMIRX�&]^ERXMRI�EW]RGLVSRSYW�TVSXSGSP�

Proof sketch:

�� 6YR�XLI�&]^ERXMRI�WXVMGX (t + 1)�WIX�EKVIIQIRX�TVSXSGSP�
PERHMRK�SR�E�WMQTPI\�MR WOIPt(I�)�

* Exchange values via Reliable Broadcast, and pick the 'smallest' one

Proof Sketch (contd.)

30

� 6YR�XLI�&]^ERXMRI�FEV]GIRXVMG�EKVIIQIRX�TVSXSGSP N XMQIW�
PERHMRK�SR�E�WMQTPI\�MR &EV]N WOIPt(I�)�

Proof Sketch (contd.)

30

� 6YR�XLI�&]^ERXMRI�FEV]GIRXVMG�EKVIIQIRX�TVSXSGSP N XMQIW�
PERHMRK�SR�E�WMQTPI\�MR &EV]N WOIPt(I�)�

Proof Sketch (contd.)

30

� 6YR�XLI�&]^ERXMRI�FEV]GIRXVMG�EKVIIQIRX�TVSXSGSP N XMQIW�
PERHMRK�SR�E�WMQTPI\�MR &EV]N WOIPt(I�)�

Proof Sketch (contd.)

30

� 6YR�XLI�&]^ERXMRI�FEV]GIRXVMG�EKVIIQIRX�TVSXSGSP N XMQIW�
PERHMRK�SR�E�WMQTPI\�MR &EV]N WOIPt(I�)�

Barycentric Agreement task

Proof Sketch (contd.)

30

� 6YR�XLI�&]^ERXMRI�FEV]GIRXVMG�EKVIIQIRX�TVSXSGSP N XMQIW�
PERHMRK�SR�E�WMQTPI\�MR &EV]N WOIPt(I�)�

Barycentric Agreement task
Agree on vertices of a
single simplex of Bary �

Proof Sketch (contd.)

30

� 6YR�XLI�&]^ERXMRI�FEV]GIRXVMG�EKVIIQIRX�TVSXSGSP N XMQIW�
PERHMRK�SR�E�WMQTPI\�MR &EV]N WOIPt(I�)�

Barycentric Agreement task
Agree on vertices of a
single simplex of Bary �

Proof Sketch (contd.)

30

� 6YR�XLI�&]^ERXMRI�FEV]GIRXVMG�EKVIIQIRX�TVSXSGSP N XMQIW�
PERHMRK�SR�E�WMQTPI\�MR &EV]N WOIPt(I�)�

Barycentric Agreement task

�TVSXSGSP�FEWIH�SR�XLI ��QYPXMHMQIRWMSREP�EKVIIQIRX�

Agree on vertices of a
single simplex of Bary �

[STOC 13]

Proof Sketch (contd.)

31

Proof Sketch (contd.)

31

&]�XLI 7MQTPMGMEP�%TTVS\MQEXMSR�8LISVIQ� f : | WOIPt(I�)| � |O�|
LEW�E WMQTPMGMEP�ETTVS\MQEXMSR

Proof Sketch (contd.)

31

&]�XLI 7MQTPMGMEP�%TTVS\MQEXMSR�8LISVIQ� f : | WOIPt(I�)| � |O�|
LEW�E WMQTPMGMEP�ETTVS\MQEXMSR

hypothesis

Proof Sketch (contd.)

31

&]�XLI 7MQTPMGMEP�%TTVS\MQEXMSR�8LISVIQ� f : | WOIPt(I�)| � |O�|
LEW�E WMQTPMGMEP�ETTVS\MQEXMSR

&EV]N WOIPt(I∗) → O∗JSV�WSQI N > 0.

hypothesis

Proof Sketch (contd.)

31

&]�XLI 7MQTPMGMEP�%TTVS\MQEXMSR�8LISVIQ� f : | WOIPt(I�)| � |O�|
LEW�E WMQTPMGMEP�ETTVS\MQEXMSR

&EV]N WOIPt(I∗) → O∗JSV�WSQI N > 0.

½RI�KVEMR�XLI�MRTYX� WS�[I�GER
±ETTVS\MQEXI² f F]�E WMQTPMGMEP QET

hypothesis

Proof Sketch (contd.)

31

� %TTP] � : &EV]N WOIPt(I�) � O� XS�GLSSWI�ZIVXMGIW�MR O��

&]�XLI 7MQTPMGMEP�%TTVS\MQEXMSR�8LISVIQ� f : | WOIPt(I�)| � |O�|
LEW�E WMQTPMGMEP�ETTVS\MQEXMSR

&EV]N WOIPt(I∗) → O∗JSV�WSQI N > 0.

½RI�KVEMR�XLI�MRTYX� WS�[I�GER
±ETTVS\MQEXI² f F]�E WMQTPMGMEP QET

hypothesis

We then...

Proof Sketch (contd.)

31

� %TTP] � : &EV]N WOIPt(I�) � O� XS�GLSSWI�ZIVXMGIW�MR O��

&]�XLI 7MQTPMGMEP�%TTVS\MQEXMSR�8LISVIQ� f : | WOIPt(I�)| � |O�|
LEW�E WMQTPMGMEP�ETTVS\MQEXMSR

&EV]N WOIPt(I∗) → O∗JSV�WSQI N > 0.

�FIGEYWI�MX Ẃ�E�WMQTPMGMEP�ETTVS\MQEXMSR� GLSSWMRK�SYXTYXW�FEWIH�SR
XLI�ETTVS\MQEXMSR�MW�GSRWMWXIRX�[MXL�GLSSWMRK�SYXTYXW�FEWIH�SR f

½RI�KVEMR�XLI�MRTYX� WS�[I�GER
±ETTVS\MQEXI² f F]�E WMQTPMGMEP QET

hypothesis

We then...

Outline

32

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Outline

32

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Outline

32

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

quick overview

Protocol Complex

33

Protocol Complex

33

Before

Protocol Complex

33

Tasks modeled as simplicial complexes

Before

Protocol Complex

33

Tasks modeled as simplicial complexes

Before

Now

Protocol Complex

33

Tasks modeled as simplicial complexes

Executions also modeled as simplicial complexes

Before

Now

Protocol Complex

33

Tasks modeled as simplicial complexes

Executions also modeled as simplicial complexes

Global state evolving throughout the rounds

Before

Now

Protocol Complex

33

Tasks modeled as simplicial complexes

Executions also modeled as simplicial complexes

Global state evolving throughout the rounds

Before

Now

Protocol Complex

Protocol Complexes

34

Protocol Complexes

34

Consensus task

Protocol Complexes

34

Consensus task t = 1

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

round 1:
P1 fails

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

Protocol Complexes

34

input

Consensus task t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

Protocol Complexes

34

input

output

Consensus task t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3 P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3 P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3

connected

P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3

connected

P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3

connected

P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3

connected

P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3

connected

P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3

connected

P2 P3

Protocol Complexes

34

input

output

Consensus task

connected

disconnected

?

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

P2 P3 P2 P3

? connected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

disconnected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

disconnected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

disconnected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

disconnected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

disconnected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

disconnected

P2 P3

P2 P3P2 P3

Protocol Complexes

35

input

output

Consensus task

connected

disconnected

t = 1 P1

P2 P3

P2

P2

P3

P3

round 1:
P1 fails

connected

round 2:
no failures

P2 P3 P2 P3

P2 P3P2 P3

disconnected

P2 P3

With Crash Failures…

36

Herlihy & Rajsbaum 2000

K0 = I∗

With Crash Failures…

36

Herlihy & Rajsbaum 2000

K0 = I∗

With Crash Failures…

36

Herlihy & Rajsbaum 2000 adversarial
execution

K0 = I∗

With Crash Failures…

36

K1 = Rc(K0, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000 adversarial
execution

K0 = I∗

With Crash Failures…

36

K1 = Rc(K0, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000

k failures per round

adversarial
execution

K0 = I∗

With Crash Failures…

36

K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000

k failures per round

adversarial
execution

K0 = I∗

With Crash Failures…

36

K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

K3 = Rc(K2, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000

k failures per round

adversarial
execution

K0 = I∗

With Crash Failures…

36

...

K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

K3 = Rc(K2, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000

k failures per round

adversarial
execution

K0 = I∗

With Crash Failures…

36

...

Theorem:
While the protocol complex is (k � 1)-connected,
we cannot solve the k-set agreement task

K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

K3 = Rc(K2, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000

k failures per round

adversarial
execution

K0 = I∗

With Crash Failures…

37

...

K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

K3 = Rc(K2, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000 adversarial
execution

k failures per round

K0 = I∗

With Crash Failures…

37

...

K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

K3 = Rc(K2, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000 adversarial
execution

Theorem:
We cannot solve k-set agreement with t failures
in �t/k� or less rounds.

k failures per round

K0 = I∗

With Crash Failures…

37

...

K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

K3 = Rc(K2, k)

(k � 1)-connected

Herlihy & Rajsbaum 2000 adversarial
execution

Theorem:
We cannot solve k-set agreement with t failures
in �t/k� or less rounds. We have a �t/k� + 1 protocol

k failures per round

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems?

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems?

Ex.: 4 processes, 1 failure

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems?

Ex.: 4 processes, 1 failure
you know this

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

i2 i2 i2

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

i2 i2 i2i′2 i′2 i′2

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

i2 i2 i2
i′2 i′2 i′2

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure

t = 2?

i1 i2 i3i0

i2 i2 i2
i′2 i′2 i′2

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure

t = 2?✘

i1 i2 i3i0

i2 i2 i2
i′2 i′2 i′2

sort of

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

i2 i2 i2

sort of

… … …

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

i2 i2 i2

sort of

… … …

…

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

i2 i2 i2

sort of

… … …

…

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

Inner nodes:
i2 i2 i2

sort of

… … …

…

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

Inner nodes:
validated i2 i2 i2

sort of

… … …

…

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

Inner nodes:
validated

Leaf nodes:

i2 i2 i2

sort of

… … …

…

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

Inner nodes:
validated

Leaf nodes:
not validated

i2 i2 i2

sort of

… … …

…

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

Inner nodes:
validated

Leaf nodes:
not validated

i2 i2 i2

Last-round equivocation is problematic…

sort of

… … …

…

Byzantine Equivocation

38

Is equivocation a problem
in synchronous systems? P0’s tree

Ex.: 4 processes, 1 failure
i1 i2 i3i0

Inner nodes:
validated

Leaf nodes:
not validated

i2 i2 i2

Last-round equivocation is problematic…
… if Byzantine processes

do not “reveal" themselves

sort of

Strategy

39

Strategy

39

We define a new round operator

Strategy

39

K0 = I∗

We define a new round operator

Strategy

39

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

We define a new round operator

Strategy

39

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

�t/k� rounds

We define a new round operator

Strategy

39

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

if t mod k �= 0�t/k� rounds

We define a new round operator

Strategy

39

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

K3 = Re(K2)

(k � 1)-connected

if t mod k �= 0�t/k� rounds

We define a new round operator

Strategy

39

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

K3 = Re(K2)

(k � 1)-connected

if t mod k �= 0�t/k� rounds

�t/k� rounds

We define a new round operator

Strategy

39

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

K3 = Re(K2)

(k � 1)-connected

if t mod k �= 0�t/k� rounds

�t/k� rounds k
-s
et

ag
re
em

en
t
pr
ot

oc
ol

We define a new round operator

Strategy

39

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

K3 = Re(K2)

(k � 1)-connected

if t mod k �= 0�t/k� rounds

�t/k� rounds k
-s
et

ag
re
em

en
t
pr
ot

oc
ol

We define a new round operator

G
en

er
al

iz
e

th
e

co
ns

en
su

s
pr

ot
oc

ol

The Equivocation Operator

40

…�t/k� rounds,
k failures/round

The Equivocation Operator

40

…�t/k� rounds,
k failures/round

The Equivocation Operator

40

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

40

(P0, sa)

(P0, sd)

(P2, sc)

(k � 1)-connected

(P1, sb)

…�t/k� rounds,
k failures/round

The Equivocation Operator

40

(P0, sa)

(P0, sd)

(P2, sc)

(k � 1)-connected

(P1, sb)

Let’s focus on
these two…

…�t/k� rounds,
k failures/round

The Equivocation Operator

40

(P0, sa)

(P0, sd)

(P2, sc)

?

?

(k � 1)-connected

(P1, sb)

Let’s focus on
these two…

…�t/k� rounds,
k failures/round

The Equivocation Operator

40

(P0, sa)

(P0, sd)

(P2, sc)

?

?

?

?

(k � 1)-connected

(P1, sb)

Let’s focus on
these two…

…�t/k� rounds,
k failures/round

The Equivocation Operator

41

(P0, sa)

(P0, sd)

(P2, sc)

?

?

?

?

(k � 1)-connected

(P1, sb)

…�t/k� rounds,
k failures/round

The Equivocation Operator

41

(P0, sa)

(P0, sd)

(P2, sc)

?

?

?

?

(k � 1)-connected

(P1, sb)

…�t/k� rounds,
k failures/round

The Equivocation Operator

41

(P0, sa)

(P0, sd)

(P2, sc)

?

?

?

?

(k � 1)-connected

(P1, sb)

…�t/k� rounds,
k failures/round

The Equivocation Operator

41

(P0, sa)

(P0, sd)

(P2, sc)

(k � 1)-connected

(P1, sb)

…�t/k� rounds,
k failures/round

The Equivocation Operator

41

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

41

(k � 1)-connected

(P2, t
′′)

(P1, t
′)

…�t/k� rounds,
k failures/round

The Equivocation Operator

42

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

42

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

P1 P2

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

P1

P1

P2

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

P1

P2 P1

P2

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

P1

P2 P1

P2

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

P1

P2 P1

P2

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

P1

P2 P1

P2

Shellable

…�t/k� rounds,
k failures/round

The Equivocation Operator

43

(k � 1)-connected

P1

P2 P1

P2

Shellable

(#procs - 2)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

44

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

44

(k � 1)-connected

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

44

(k � 1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

44

(k � 1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

K

…�t/k� rounds,
k failures/round

The Equivocation Operator

44

(k � 1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

K

…�t/k� rounds,
k failures/round

The Equivocation Operator

44

(k � 1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

Nerve N

K

…�t/k� rounds,
k failures/round

The Equivocation Operator

44

(k � 1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

(k � 1)-connected

(k
� 1)

-co
nn
ec
ted (k �

1)-connected

Nerve N

K

Application of the Nerve Lemma

…�t/k� rounds,
k failures/round

The Equivocation Operator

45

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

45

(k � 1)-connected

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

45

(k � 1)-connected

(k � 1)-connected

(k � 1)-connected

…�t/k� rounds,
k failures/round

The Equivocation Operator

45

(k � 1)-connected

(k � 1)-connected

(k � 1)-connected

Extend throughout structure

…�t/k� rounds,
k failures/round

The Equivocation Operator

45

(k � 1)-connected

(k � 1)-connected

(k � 1)-connected

Extend throughout structure
Subsequent applications of the Nerve Lemma

Strategy, Again

46

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

K3 = Re(K2)

(k � 1)-connected

We match the bound with an algorithm

if t mod k �= 0�t/k� rounds

�t/k� rounds

Strategy, Again

46

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

K3 = Re(K2)

(k � 1)-connected

We match the bound with an algorithm

if t mod k �= 0�t/k� rounds

�t/k� rounds k
-s
et

ag
re
em

en
t
pr
ot

oc
ol

Strategy, Again

46

K0 = I∗ K1 = Rc(K0, k)

(k � 1)-connected

K2 = Rc(K1, k)

(k � 1)-connected

...

K3 = Re(K2)

(k � 1)-connected

We match the bound with an algorithm

if t mod k �= 0�t/k� rounds

�t/k� rounds k
-s
et

ag
re
em

en
t
pr
ot

oc
ol

G
en

er
al

iz
e

th
e

co
ns

en
su

s
pr

ot
oc

ol

Outline

47

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Outline

47

1. Introduction

2. Asynchronous Byzantine Systems

3. Synchronous Byzantine Systems

4. Conclusion & Future Work

Conclusion

48

Conclusion

49

Conclusion

• Asynchronous Byzantine computability by reduction

49

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

49

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

49

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

2. A “layer of interpretation” that empowers the model

49

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

2. A “layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

49

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

2. A “layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

49

• Synchronous Byzantine computability by shellability

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

2. A “layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

49

• Synchronous Byzantine computability by shellability
1. Different layer of interpretation

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

2. A “layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

49

• Synchronous Byzantine computability by shellability
1. Different layer of interpretation

• Round-by-round interpretation of messages

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

2. A “layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

49

• Synchronous Byzantine computability by shellability
1. Different layer of interpretation

• Round-by-round interpretation of messages

• We cannot validate messages from the last round

Conclusion

• Asynchronous Byzantine computability by reduction
1. Algorithmic primitives incorporated into the model

• Reliable Broadcast

2. A “layer of interpretation” that empowers the model

3. Mix of topological/algorithmic arguments, results fundamentally topological

49

• Synchronous Byzantine computability by shellability
1. Different layer of interpretation

• Round-by-round interpretation of messages

• We cannot validate messages from the last round

2. Topological upper bound, algorithmic lower bound

Future Work

50

Future Work (i.e. Research Questions)

51

Future Work (i.e. Research Questions)

• Randomized Protocols

• Many impossible problems (in a deterministic setting)
now become possible

51

Future Work (i.e. Research Questions)

• Randomized Protocols

• Many impossible problems (in a deterministic setting)
now become possible

• Complexity

• Particularly in asynchronous systems

• Proofs are not constructive

51

Future Work (i.e. Research Questions)

• Randomized Protocols

• Many impossible problems (in a deterministic setting)
now become possible

• Complexity

• Particularly in asynchronous systems

• Proofs are not constructive

• Failure Detectors

• Allow us to detect the crash of peer processes

• Again, many impossible problems now become possible

51

References

52

Research Statement Hammurabi Mendes

2.2 Computability – Randomization and Stabilization

I intend to continue my research on distributed computability, identifying solvability conditions for tasks
described in a general, abstract way. My medium- to long-term research agenda focuses on protocols that
rely on randomization, failure detectors (which model practical mechanisms that assess peer availability
in distributed systems), and other dynamic stabilization mechanisms. I plan to keep using the tools and
language of combinatorial topology, since (1) they often expose novel results with more model-independent,
existential arguments, instead of model-specific, (complicated) constructive arguments; and (2) they expose
fundamental reasons for impossibility results, by means of expressive characterizations.

With randomized protocols, an eventual property (based on probability) ensures probabilistic progress
and termination for the distributed algorithm, making solvable otherwise unsolvable tasks. Also, with failure
detectors that are only eventually effective, problems otherwise impossible become possible. I plan to use the
topology-based language/approach to model and analyze both scenarios, hopefully situating them together
in a wider scope of protocols – protocols depending on a certain kind of dynamic, eventual stabilization for
progress and termination. With the expressive and elegant language of combinatorial topology, this research
can potentially bring valuable mathematical insight into key areas of theoretical distributed computing.

2.3 Systems – Concurrency, Parallelism, and Large-Scale Data Processing

Concurrent data structures and algorithms avoid non-scalable, blocking operations – such as locks – and are
increasingly critical for their improved fault-tolerance and scalability. However, implementing concurrent
algorithms often requires programmers to think too much in terms of architecture (e.g. cache and memory
models), and low-level synchronization details, instead of focusing on the actual functional requirements. I
plan to focus my research on designing novel concurrency techniques, not only improving the “concurrent
programmer’s toolbox,” but particularly considering how they can speed up large-scale data processing sys-
tems. Incorporating these techniques into operating systems, programming languages, and (big)data systems
is essential to promote the full benefit of these techniques. I believe that coupling hardware transactional
memory with well-established software techniques such as randomization, boosting, elimination, etc, has
enormous potential to promote scalability in a variety of settings.

The application of concurrency techniques to large-scale data processing systems must be attentive
to ever-changing operational settings, such as energy-efficient computing, increasingly large clusters and
NUMA multiprocessor systems, heterogeneous multicore machines, or GPGPU systems (or other kinds of
hardware accelerators). Research on concurrent data structures and algorithms, and its potential to promote
scalability in large-scale data processing systems, is critical for the data-intensive applications of tomorrow.

References

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391–400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1–19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 704–713, New York, NY, USA, 2014. ACM.

[4] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue with elimination
and combining. In Fabian Kuhn, editor, Distributed Computing, volume 8784 of Lecture Notes in Com-
puter Science, pages 406–420. Springer Berlin / Heidelberg, October 2014.

4

Published:

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

References

52

Research Statement Hammurabi Mendes

2.2 Computability – Randomization and Stabilization

I intend to continue my research on distributed computability, identifying solvability conditions for tasks
described in a general, abstract way. My medium- to long-term research agenda focuses on protocols that
rely on randomization, failure detectors (which model practical mechanisms that assess peer availability
in distributed systems), and other dynamic stabilization mechanisms. I plan to keep using the tools and
language of combinatorial topology, since (1) they often expose novel results with more model-independent,
existential arguments, instead of model-specific, (complicated) constructive arguments; and (2) they expose
fundamental reasons for impossibility results, by means of expressive characterizations.

With randomized protocols, an eventual property (based on probability) ensures probabilistic progress
and termination for the distributed algorithm, making solvable otherwise unsolvable tasks. Also, with failure
detectors that are only eventually effective, problems otherwise impossible become possible. I plan to use the
topology-based language/approach to model and analyze both scenarios, hopefully situating them together
in a wider scope of protocols – protocols depending on a certain kind of dynamic, eventual stabilization for
progress and termination. With the expressive and elegant language of combinatorial topology, this research
can potentially bring valuable mathematical insight into key areas of theoretical distributed computing.

2.3 Systems – Concurrency, Parallelism, and Large-Scale Data Processing

Concurrent data structures and algorithms avoid non-scalable, blocking operations – such as locks – and are
increasingly critical for their improved fault-tolerance and scalability. However, implementing concurrent
algorithms often requires programmers to think too much in terms of architecture (e.g. cache and memory
models), and low-level synchronization details, instead of focusing on the actual functional requirements. I
plan to focus my research on designing novel concurrency techniques, not only improving the “concurrent
programmer’s toolbox,” but particularly considering how they can speed up large-scale data processing sys-
tems. Incorporating these techniques into operating systems, programming languages, and (big)data systems
is essential to promote the full benefit of these techniques. I believe that coupling hardware transactional
memory with well-established software techniques such as randomization, boosting, elimination, etc, has
enormous potential to promote scalability in a variety of settings.

The application of concurrency techniques to large-scale data processing systems must be attentive
to ever-changing operational settings, such as energy-efficient computing, increasingly large clusters and
NUMA multiprocessor systems, heterogeneous multicore machines, or GPGPU systems (or other kinds of
hardware accelerators). Research on concurrent data structures and algorithms, and its potential to promote
scalability in large-scale data processing systems, is critical for the data-intensive applications of tomorrow.

References

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391–400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1–19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 704–713, New York, NY, USA, 2014. ACM.

[4] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue with elimination
and combining. In Fabian Kuhn, editor, Distributed Computing, volume 8784 of Lecture Notes in Com-
puter Science, pages 406–420. Springer Berlin / Heidelberg, October 2014.

4

Published:

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

References

52

Research Statement Hammurabi Mendes

2.2 Computability – Randomization and Stabilization

I intend to continue my research on distributed computability, identifying solvability conditions for tasks
described in a general, abstract way. My medium- to long-term research agenda focuses on protocols that
rely on randomization, failure detectors (which model practical mechanisms that assess peer availability
in distributed systems), and other dynamic stabilization mechanisms. I plan to keep using the tools and
language of combinatorial topology, since (1) they often expose novel results with more model-independent,
existential arguments, instead of model-specific, (complicated) constructive arguments; and (2) they expose
fundamental reasons for impossibility results, by means of expressive characterizations.

With randomized protocols, an eventual property (based on probability) ensures probabilistic progress
and termination for the distributed algorithm, making solvable otherwise unsolvable tasks. Also, with failure
detectors that are only eventually effective, problems otherwise impossible become possible. I plan to use the
topology-based language/approach to model and analyze both scenarios, hopefully situating them together
in a wider scope of protocols – protocols depending on a certain kind of dynamic, eventual stabilization for
progress and termination. With the expressive and elegant language of combinatorial topology, this research
can potentially bring valuable mathematical insight into key areas of theoretical distributed computing.

2.3 Systems – Concurrency, Parallelism, and Large-Scale Data Processing

Concurrent data structures and algorithms avoid non-scalable, blocking operations – such as locks – and are
increasingly critical for their improved fault-tolerance and scalability. However, implementing concurrent
algorithms often requires programmers to think too much in terms of architecture (e.g. cache and memory
models), and low-level synchronization details, instead of focusing on the actual functional requirements. I
plan to focus my research on designing novel concurrency techniques, not only improving the “concurrent
programmer’s toolbox,” but particularly considering how they can speed up large-scale data processing sys-
tems. Incorporating these techniques into operating systems, programming languages, and (big)data systems
is essential to promote the full benefit of these techniques. I believe that coupling hardware transactional
memory with well-established software techniques such as randomization, boosting, elimination, etc, has
enormous potential to promote scalability in a variety of settings.

The application of concurrency techniques to large-scale data processing systems must be attentive
to ever-changing operational settings, such as energy-efficient computing, increasingly large clusters and
NUMA multiprocessor systems, heterogeneous multicore machines, or GPGPU systems (or other kinds of
hardware accelerators). Research on concurrent data structures and algorithms, and its potential to promote
scalability in large-scale data processing systems, is critical for the data-intensive applications of tomorrow.

References

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391–400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1–19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 704–713, New York, NY, USA, 2014. ACM.

[4] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue with elimination
and combining. In Fabian Kuhn, editor, Distributed Computing, volume 8784 of Lecture Notes in Com-
puter Science, pages 406–420. Springer Berlin / Heidelberg, October 2014.

4

Published:

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

References

52

Research Statement Hammurabi Mendes

2.2 Computability – Randomization and Stabilization

I intend to continue my research on distributed computability, identifying solvability conditions for tasks
described in a general, abstract way. My medium- to long-term research agenda focuses on protocols that
rely on randomization, failure detectors (which model practical mechanisms that assess peer availability
in distributed systems), and other dynamic stabilization mechanisms. I plan to keep using the tools and
language of combinatorial topology, since (1) they often expose novel results with more model-independent,
existential arguments, instead of model-specific, (complicated) constructive arguments; and (2) they expose
fundamental reasons for impossibility results, by means of expressive characterizations.

With randomized protocols, an eventual property (based on probability) ensures probabilistic progress
and termination for the distributed algorithm, making solvable otherwise unsolvable tasks. Also, with failure
detectors that are only eventually effective, problems otherwise impossible become possible. I plan to use the
topology-based language/approach to model and analyze both scenarios, hopefully situating them together
in a wider scope of protocols – protocols depending on a certain kind of dynamic, eventual stabilization for
progress and termination. With the expressive and elegant language of combinatorial topology, this research
can potentially bring valuable mathematical insight into key areas of theoretical distributed computing.

2.3 Systems – Concurrency, Parallelism, and Large-Scale Data Processing

Concurrent data structures and algorithms avoid non-scalable, blocking operations – such as locks – and are
increasingly critical for their improved fault-tolerance and scalability. However, implementing concurrent
algorithms often requires programmers to think too much in terms of architecture (e.g. cache and memory
models), and low-level synchronization details, instead of focusing on the actual functional requirements. I
plan to focus my research on designing novel concurrency techniques, not only improving the “concurrent
programmer’s toolbox,” but particularly considering how they can speed up large-scale data processing sys-
tems. Incorporating these techniques into operating systems, programming languages, and (big)data systems
is essential to promote the full benefit of these techniques. I believe that coupling hardware transactional
memory with well-established software techniques such as randomization, boosting, elimination, etc, has
enormous potential to promote scalability in a variety of settings.

The application of concurrency techniques to large-scale data processing systems must be attentive
to ever-changing operational settings, such as energy-efficient computing, increasingly large clusters and
NUMA multiprocessor systems, heterogeneous multicore machines, or GPGPU systems (or other kinds of
hardware accelerators). Research on concurrent data structures and algorithms, and its potential to promote
scalability in large-scale data processing systems, is critical for the data-intensive applications of tomorrow.

References

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391–400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1–19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 704–713, New York, NY, USA, 2014. ACM.

[4] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue with elimination
and combining. In Fabian Kuhn, editor, Distributed Computing, volume 8784 of Lecture Notes in Com-
puter Science, pages 406–420. Springer Berlin / Heidelberg, October 2014.

4

Published:

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

References

52

Research Statement Hammurabi Mendes

2.2 Computability – Randomization and Stabilization

I intend to continue my research on distributed computability, identifying solvability conditions for tasks
described in a general, abstract way. My medium- to long-term research agenda focuses on protocols that
rely on randomization, failure detectors (which model practical mechanisms that assess peer availability
in distributed systems), and other dynamic stabilization mechanisms. I plan to keep using the tools and
language of combinatorial topology, since (1) they often expose novel results with more model-independent,
existential arguments, instead of model-specific, (complicated) constructive arguments; and (2) they expose
fundamental reasons for impossibility results, by means of expressive characterizations.

With randomized protocols, an eventual property (based on probability) ensures probabilistic progress
and termination for the distributed algorithm, making solvable otherwise unsolvable tasks. Also, with failure
detectors that are only eventually effective, problems otherwise impossible become possible. I plan to use the
topology-based language/approach to model and analyze both scenarios, hopefully situating them together
in a wider scope of protocols – protocols depending on a certain kind of dynamic, eventual stabilization for
progress and termination. With the expressive and elegant language of combinatorial topology, this research
can potentially bring valuable mathematical insight into key areas of theoretical distributed computing.

2.3 Systems – Concurrency, Parallelism, and Large-Scale Data Processing

Concurrent data structures and algorithms avoid non-scalable, blocking operations – such as locks – and are
increasingly critical for their improved fault-tolerance and scalability. However, implementing concurrent
algorithms often requires programmers to think too much in terms of architecture (e.g. cache and memory
models), and low-level synchronization details, instead of focusing on the actual functional requirements. I
plan to focus my research on designing novel concurrency techniques, not only improving the “concurrent
programmer’s toolbox,” but particularly considering how they can speed up large-scale data processing sys-
tems. Incorporating these techniques into operating systems, programming languages, and (big)data systems
is essential to promote the full benefit of these techniques. I believe that coupling hardware transactional
memory with well-established software techniques such as randomization, boosting, elimination, etc, has
enormous potential to promote scalability in a variety of settings.

The application of concurrency techniques to large-scale data processing systems must be attentive
to ever-changing operational settings, such as energy-efficient computing, increasingly large clusters and
NUMA multiprocessor systems, heterogeneous multicore machines, or GPGPU systems (or other kinds of
hardware accelerators). Research on concurrent data structures and algorithms, and its potential to promote
scalability in large-scale data processing systems, is critical for the data-intensive applications of tomorrow.

References

[1] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory of Computing,
STOC’13, pages 391–400, New York, NY, USA, 2013. ACM.

[2] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and VijayK. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1–19, 2015.

[3] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 704–713, New York, NY, USA, 2014. ACM.

[4] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue with elimination
and combining. In Fabian Kuhn, editor, Distributed Computing, volume 8784 of Lecture Notes in Com-
puter Science, pages 406–420. Springer Berlin / Heidelberg, October 2014.

4

Published:

ArXiV:

Hammurabi Mendes, Maurice Herlihy. Tight Bounds for Connectivity and Set Agreement in Byzantine
Synchronous Systems. arxiv.org/abs/1505.04224

Thank You!

53

hmendes@cs.rochester.edu

mailto:hmendes@cs.brown.edu?subject=

