
Defn: An operation on G is a map ◦ : G×G → G.

Defn: (G, ◦) is a group if

0.) G is closed under ◦: f, g ∈ G implies f ◦ g ∈ G.

1.) ◦ is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h).
2.) G has an identity element: ∃i ∈ G such that ∀ f ∈ G,

i ◦ f = f ◦ i = f .

3.) All elements of G are invertible: for all f ∈ G, ∃f−1 ∈ G
such that, f−1 ◦ f = f ◦ f−1 = i.

Ex: (Z,+), (R− { 0 },×)

Ex: (M,×) where M = set of invertible matrices.

Ex: Let G = {f : A → A | f is a bijection } under compos-
ition of functions.

Ex: Sn = the group of permutations of {1, ..., n}
= {f : {1, ..., n} → {1, ..., n} | f is a bijection }

Ex: The group of rotations of a regular n−gon
= {i, ρn, ρ2n, ..., ρn−1

n }

Ex: The set of reflections of a regular n−gon is NOT a
group (the product of two reflections is a rotation).

Ex: Dn = the group of symmetries of a regular n−gon
= the group of rotations and reflections of a regular n−gon.

= {i, ρn, ρ2n, ..., ρn−1
n , τ, ρnτ, ρ2nτ, ..., ρn−1

n τ}

Note a group need not be commutative: f ◦g ̸= g ◦f .
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Defn: H is a subgroup of G if H ⊂ G and H is a group. I.e.,

0.) H is closed under ◦.
1.) the identity i of G is in H.
2.) for all f ∈ H, f−1 ∈ H.

Ex: Dn is a subgroup of Sn.
Note: D3 = S3. For n > 3 Dn ⊂ Sn, Dn ̸= Sn.

Defn: Let X be a set and G a group. An action of G on X
is a map ∗ : G×X → X such that

1.) e ∗ x = x ∀x ∈ X.

2.) (g ◦ f) ∗ x = g ∗ (f ∗ x) ∀x ∈ X and ∀g, f ∈ G.

Let C be a set of colors.
Defn: A coloring of X is a function c : X → C

Example: If X = {1, 2, 3}, C = {red, blue}, then
let C = {c1, c2, c3, c4, c5, c6, c7, c8} where

ci : {1, 2, 3} → {red, blue} ∀i and
c1(j) = blue for all j;

c2(1) = blue, c2(2) = blue , c2(3) = red;

c3(1) = blue, c3(2) = red, c3(3) = blue;

c4(1) = red, c4(2) = blue, c4(3) = blue;

c5(1) = blue, c5(2) = red, c5(3) = red;

c6(1) = red, c6(2) = blue, c6(3) = red;

c7(1) = red, c7(2) = red, c7(3) = blue;

c8(j) = red for all j.
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Let G be a set of permutations.
A permutation f acts on a coloring c as follows:

(f ∗ c)(x) = (c ◦ f−1)(x) = c(f−1(x))

Note: id ∗ c = c ◦ id−1 = c ◦ id = c
Also, (g ◦ f) ∗ c = c ◦ (g ◦ f)−1 = c ◦ (f−1 ◦ g−1)

= (c ◦ f−1) ◦ g−1 = (f ∗ c) ◦ g−1 = g ∗ (f ∗ c)

Ex: Suppose f is the permutation ρ3 = 231. Then

ρ3 ∗ c2(1) = c2(ρ
−1
3 (1)) = c2(3) = red.

ρ3 ∗ c2(2) = c2(ρ
−1
3 (2)) = c2(1) = blue.

ρ3 ∗ c2(3) = c2(ρ
−1
3 (3)) = c2(2) = blue.

Thus ρ3 ∗ c2 = c4

Defn: Let G be a subgroup of the set of permutations, Sn.
c1 ∼ c2 if there exists an f ∈ G such that f ∗ c1 = c2

Theorem: ∼ is an equivalence relation.

Ex: Find the number of circular permutations of the mul-
tiset {2 · blue, 1 · red}
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14.2: Burnside’s Theorem.

Defn: The stabilizer of c = G(c) = {f ∈ G | f ∗ c = c}.

Defn: C(f) = {c ∈ C | f ∗ c = c}.

Thm 14.2.1a: G(c) is a group.

Thm 14.2.1b: g ∗ c = f ∗ c if and only if f−1 ◦ g ∈ G(c).

Thm 14.2.2: |{f ∗ c | f ∈ G}| = |G|
|G(c)|

Note [c] = |{f ∗ c | f ∈ G}|

= the # of different colorings which are equivalent to c.

= the number of elements in the equivalence class [c].

Thm 14.2.3: Suppose for all f ∈ G and for all c ∈ C, f ∗c ∈
C′. Then

N(G,C) = the number of non-equivalent colorings in C

= the number of different equivalence classes

=
1

|G|
∑
f∈G

|C(f)|

= the average of the # of colorings fixed by the permutat-
ions in G.
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