
Thm 3.3: Suppose F is a continuous vector field.

F = ∇f iff F has path independent line integrals.

Moreover if C is a piecewise C1 curve, then

∫

C

F · ds = f(B) − f(A)

where A is the initial point of C and B is the terminal point
of C.

Thm 3.5. Suppose F is a C1 vector field and suppose R =
the domain of F is simply connected in R

2 or R
3.Then

F = ∇f for f ∈ C2 iff ∇× F = 0 for all x ∈ R.

Suppose F = (M(x, y), N(x, y)). Then ∇×F = (∂N
∂x

− ∂M
∂y

)k

Ex: F (x, y) = (x3, ey)
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Parametrized curves:

Ex: f : [0, 2π] → R
2, f(t) = (cos(t), sin(t))

Note this is a function of 1 variable. Thus 1 degree of freedom.
Hence we obtain 1-dimensional curves.

Note f is 1:1 on (0, 2π) (but not 1:1 on boundary of [0, 2π]

Thus the image of f = {(cos(t), sin(t)) | t ∈ R} is a curve in
R

2.

A parametrization of the image of f is
x(t) = cos(t), y(t) = sin(t).

This curve can also be represented by the level set, g−1(1)
where g(x, y) = x2 + y2

The graph of f = {(t, f(t)) = (t, cos(t), sin(t)) | t ∈ R} is
also a curve in R

3.

A parametrization of the graph of f is
x(t) = t, y(t) = cos(t), z(t) = sin(t).
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7.1 Parametrized surfaces

Ex: f(s, t) = [0, 2π] × R → R
3

f(s, t) = (cos(s), sin(s), t)

Note this is a function of 2 variables. Thus 2 degrees of free-
dom. Hence the image is a 2-dimensional surface.

Note f is 1:1 on the interior of the domain, but not on the
boundary.

The graph of f is also a 2-dimensional surface (in R
5), but

we will focus on the image of f .
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Defn: Suppose X : D → R
n, D ⊂ R

2.

Fix t0 ∈ R. The s-coordinate curve at t = t0 is the image of
the map c1(s) = X(s, t0).

Fix s0 ∈ R. The t-coordinate curve at s = s0 is the image of
the map c2(t) = X(s0, t).
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Suppose X(s, t) differentiable.

Let Ts(s0, t0) = ∂X
∂s

(s0, t0) = tangent vector to the s-coordinate
curve X(s, t0)

Let Tt(s0, t0) = ∂X
∂t

(s0, t0) = tangent vector to the t-coordinate
curve X(s0, t)

Thus Ts and Tt are tangent to the surface X(D)

A normal to this surface is

Defn: A parametrized surface S = X(D) is smooth at X(s0, t0)
if X is C1 near (s0, t0) and if N(s0, t0) = Ts(s0, t0)×Tt(s0, t0) 6=
0.

If S is smooth at every point in D, then the surface S is
smooth.

If S is a smooth parametrized surface, then N = Ts × Tt is
the standard normal vector arising from the parametrization

of X.
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Let V be a finite-dimensional vector space over R.

The dual of V = V ∗ = {f : V → R | f linear }

Note V ∗ is a vector space. The elements of V ∗ are called
covectors.

If e1, ..., en basis for V , then w1, ..., wn basis for V ∗ where

wi : V → R where wi(ej) = δij =

{

1 i = j

0 i 6= j

dim V = dim V ∗

Let F∗ : V → W be a linear map between vector spaces
The dual map map is F ∗ : W ∗ → V ∗, F (g) = g ◦ F .

F∗ is injective implies F ∗ injective

F∗ is surjective implies F ∗ surjective

(G∗ ◦ F∗)
∗ = F ∗ ◦ G∗.

d : V → (V ∗)∗, d(v) = h where h : V ∗ → R, h(f) = f(v).

Thus (V ∗)∗ is naturally isomorphic to V .

Defn: The dual of TpM = T ∗

p M is the cotangent space to M

at p.

If ∂
∂x1

, ..., ∂
∂xm

is a basis for TpM , then the dual basis will be
denoted dx1, ..., dxm.
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B is bilinear if
B(cv1 + dv2, w) = cB(v1, w) + dB(v2, w)
B(v, cw1 + dw2) = cB(v, w1) + dB(v, w2)

Thus

B((v1, w1) + (v2, w2)) = B(v1 + v2, w1 + w2)
= B(v1, w1 + w2) + B(v2, w1 + w2)
= B(v1, w1) + B(v1, w2) + B(v2, w1) + B(v2, w2)

B is linear if
B((v1, w1) + (v2, w2)) = B((v1, w1)) + B((v2, w2))
B(c(v1, w1)) = cB((v1, w1)
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