Randell's Submanifolds (2.3) = Boothby's Regular submanifold (III.5):

If K is a submanifold of M, then K has the subspace topology.

If $(\phi_{\alpha}, U_{\alpha})$ is a chart for M such that $\phi_{\alpha}(U_{\alpha}) = \Pi_{1}^{m}(-\epsilon, \epsilon)$ and $\phi_{\alpha}(U_{\alpha} \cap K) = \Pi_{1}^{k}(-\epsilon, \epsilon) \times \Pi_{k+1}^{m}\{0\}$, then $(\phi_{\alpha}|_{U_{\alpha}\cap K}, U_{\alpha}\cap K), \ \phi_{\alpha}|_{U_{\alpha}\cap K} : U_{\alpha}\cap K \to \Pi_{1}^{k}(-\epsilon, \epsilon)$ is a chart for K.

Prop: If $U^{open} \subset M^m$, then U is an m-dimensional submanifold of M.

Prop: If K is a submanifold of M, then $i : K \to M$, i(k) = k, the inclusion map is smooth.

Ex: Find a counterexample to the above if we replace the hypothesis K is a submanifold of M with $K \subset M$.

Prop: If $f: N \to M$ is smooth and if H is a submanifold of N, then $f: H \to M$ is smooth

Ex: Find a counterexample to the above if we replace the hypothesis H is a submanifold of N with $H \subset N$.

Prop: If $f: N \to M$ is smooth and if K is a submanifold of M and if $f(N) \subset K$, then $f: N \to K$ is smooth.

Ex: Find a counterexample to the above if we replace the hypothesis K is a submanifold of M with $K \subset M$.

Boothy III.6 = Randell Chapter 1.3

Defn: G is a topological group if 1.) (G, *) is a group 2.) G is a topological space. 3.) $*: G \times G \to G, *(g_1, g_2) = g_1 * g_2$, and $In: G \to G, In(g) = g^{-1}$ are both continuous functions.

Defn: G is a *Lie group* if

- 1.) G is a group
- 2.) G is a smooth manifold.
- 3.) * and In are smooth functions.

Ex: $Gl(n, \mathbf{R}) =$ set of all invertible $n \times n$ matrices is a Lie group:

- 1.) $(Gl(n, \mathbf{R}), matrix multiplication)$ is a group
- 2.) $(Gl(n, \mathbf{R})$ is a smooth manifold.
- 3.) $*(Gl(n, \mathbf{R}) \times (Gl(n, \mathbf{R}) \rightarrow (Gl(n, \mathbf{R}),$

*(A, B) = AB and

$$In: (Gl(n, \mathbf{R}) \to (Gl(n, \mathbf{R})))$$

 $In(A) = A^{-1}$ are smooth functions.

Ex: $(\mathbf{C} - \{\mathbf{0}\}, \cdot)$, is a Lie group.

Thm: If G is a Lie group and H is a submanifold, then H is a Lie group.

Ex: (S^1, \cdot)

Ex: G_1, G_2 lie groups implies $G_1 \times G_2$ is a lie group.

Ex: $T^n = S^1 \times \ldots \times S^1$ is a Lie group.

The following maps are diffeomorphisms:

$$In: G \to G, In(g) = g^{-1}.$$

For $a \in G$,

 $L_a: G \to G, \ L_a(g) = ag$

$$R_a: G \to G, R_a(g) = ga$$

Ex: $O(n) = \{M \in GL(n, \mathbf{R}) \mid M^t M = I\}$ is a Lie group.

Ex: $Sl(n, \mathbf{R}) = \{M \in GL(n, \mathbf{R}) \mid det(M) = 1\}$ is a Lie group.

Defn: F is a *homomorphism* of Lie groups if F is an algebraic homomorphism of Lie groups and F is smooth.

Ex: $F : GL(n, \mathbf{R}) \to \mathbf{R} - \{\mathbf{0}\}, F(M) = det(M)$ is a homomorphism.

Randell's Submanifolds (2.3) = Boothby's Regular submanifold (III.5):

 $K \subset N$ is a k-submanifold of N if $\forall p \in K$, there exists,

Suppose $f: N \to M$ is smooth and has constant rank k. If $q \in M$, then $f^{-1}(q)$ is a submanifold of N of dimension n-k.

Proof: Let $p \in f^{-1}(q)$. By the rank theorem,

Ex: $F: (\mathbf{R}, +) \to (S^1, \cdot), F(t) = e^{2\pi i t}$ is a homomorphism.

Ex: $F : (\mathbf{R}^n, +) \to (T^n, \cdot), F(t_1, ..., t_n) = (e^{2\pi i t_1}, ..., e^{2\pi i t_n})$ is a homomorphism.

Thm: If $F: G_1 \to G_2$ is a homomorphism of Lie groups, then

- 1.) rank(F) is constant.
- 2.) kernel of $F = F^{-1}(e)$ is a closed submanifold
- 3.) $F^{-1}(e)$ is a Lie group.
- 4.) $dim(ker F) = dim(G_1) rank(F)$

Thm: If H is a submanifold and an algebraic subgroup of G, then H is closed in G.

Defn: G = group, X = set. G acts on X (on the left) if $\exists \sigma : G \times X \to X$ such that

1.)
$$\sigma(e, x) = x \quad \forall x \in X$$

2.) $\sigma(g_1, \sigma(g_2, x)) = \sigma(g_1g_2, x)$

Notation: $\sigma(g, x) = gx$. Thus 1) ex = x; 2) $g_1(g_2 x) = (g_1 g_2)(x)$.

If G is a Lie group and X is a smooth manifold, then we require σ to be smooth.

Defn: The *orbit* of
$$x \in X =$$

 $G(x) = \{y \in X \mid \exists g \text{ such that } y = gx\}$

Note: 1.) $x \in G(x)$ 2.) If $G(x) \cap G(y) \neq \emptyset$, then G(x) = G(y)

Thus we can use an action of G to partition X into disjoint subsets.

Defn: If G acts on X, then $X/G = X/\sim$ where $x \sim y$ iff $y \in G(x)$ iff $\exists g$ such that y = gx.

If X is a topological space, then $X/G = X/\sim$ is a topological space with the quotient topology.

When is $X/G = X/ \sim$ a manifold?

Ex:
$$G = (\mathbf{Z}, +), M = \mathbf{R}, \sigma(n, x) = n + x.$$

 $M/G =$
Ex: $G = (\mathbf{Z} \times \mathbf{Z}, +), M = \mathbf{R}^2,$
 $\sigma((n, m), (x, y)) = (n + x, m + y).$
 $M/G =$
Ex: $G = (\mathbf{Z}_2, +), M = S^n, \sigma(0, x) = x, \sigma(1, x) = -x, .$
 $M/G =$