Defn: G is a topological group if

1.) (G, *) is a group

2.) G is a topological space.

3.) $*: G \times G \to G$, $*(g_1, g_2) = g_1 * g_2$, and $In: G \to G$, $In(g) = g^{-1}$ are both continuous functions.

Defn: G is a *Lie group* if

1.) G is a topological group

2.) G is a smooth manifold.

3.) * and In are smooth functions.

Ex: $(\mathbf{R}, +)$, $(\mathbf{R} - \{0\}, \cdot)$, $(\mathbf{C} - \{0\}, \cdot)$, (S^1, \cdot) where $S^1 \subset \mathbf{C}$, $(\mathbf{Z}, +)$, $(\mathbf{Z}_p, +)$, $(Gl(n, \mathbf{R}), matrix multiplication)$ are Lie groups. For G_1, G_2 lie groups, $G_1 \times G_2$ is a lie group.

Defn: G = group, X = set. G acts on X (on the left) if $\exists \sigma : G \times X \to X$ such that

1.)
$$\sigma(e, x) = x \quad \forall x \in X$$

2.) $\sigma(g_1, \sigma(g_2, x)) = \sigma(g_1g_2, x)$

Notation: $\sigma(g, x) = gx$. Thus 1) ex = x; 2) $g_1(g_2x) = (g_1g_2)(x)$.

If G is a topological group and X is a topological space, then we require σ to be continuous.

If G is a Lie group and X is a smooth manifold, then we require σ to be smooth.

Defn: The orbit of $x \in X =$ $G(x) = \{y \in X \mid \exists g \text{ such that } y = gx\}$

Note: 1.) $x \in G(x)$ 2.) If $G(x) \cap G(y) \neq \emptyset$, then G(x) = G(y)

Thus we can use an action of G to partition X into disjoint subsets.

Hence the action of G on X can be used to define an equivalence relation on X: $x \sim y$ iff $y \in G(x)$ iff $\exists g$ such that y = gx. $X/G = X/\sim$.

If X is a topological space, then $X/G = X/\sim$ is a topological space with the quotient topology.

When is $X/G = X/ \sim$ a manifold?

Ex:
$$G = (\mathbf{Z}, +), M = \mathbf{R}, \sigma(n, x) = n + x$$

M/G =

Ex:
$$G = (\mathbf{Z} \times \mathbf{Z}, +), M = \mathbf{R}^2,$$

 $\sigma((n, m), (x, y)) = (n + x, m + y).$

M/G =

Ex:
$$G=(\mathbf{Z_2},+),\,M=S^n,\,\sigma(0,x)=x,\,\sigma(1,x)=-x,$$
 .
$$M/G=$$

 $\widehat{}$

Defn: The action of G on X is *free* if gx = x implies g = e.

Thm 1.3.9: If M is a smooth n-manifold, and G is a finite Lie group acting freely on M, then M/G is a smooth n-manifold. Also, $p: M \to M/G$ is smooth.

Cor:

Defn: G is a discrete group if

0.) G is a group.

1.) G is countable

2.) G has the discrete topology

Note a discrete group is a Lie group.

Defn: The action of G on M is properly discontinuous if $\forall x \in M, \exists U^{open}$ such that $x \in U$ and $U \cap gU = \emptyset \ \forall g \in G$.

Ex: $(\mathbf{Z}, +)$ acting on \mathbf{R}^1 where $\sigma(n, x) = n + x$.

Thm 1.3.2: M smooth n-manifold, G discrete group acting properly discontinuously on M implies M/G is a smooth n-manifold. Also, $p: M \to M/G$ is smooth.

 \sim