Defn: Suppose $f: W \to N$ where $W \subset M$ and N are smooth manifolds. f is smooth if for all $p \in W$, \exists charts (ϕ, U) and (ψ, V) and such that $p \in U$, $f(p) \in V$, $f(U) \subset V$ and $\psi \circ f \circ \phi^{-1}$ is smooth.

0.) If $f: W \to N$ is smooth, then given charts (ϕ, U) and (ψ, V) such that $f(U) \subset V$, then $\psi \circ f \circ \phi^{-1}$ is smooth.

1.) If $f: W \to N$ is smooth, then f is continuous.

2.) If $f: W \to N$ is smooth, $V^{open} \subset W$, then $f: V \to N$ is smooth.

3.) $f: W \to N, W = \bigcup U_{\alpha}^{open}$, and $f: U_{\alpha} \to N$ smooth for all α , then $f: W \to N$ is smooth.

4.) If f, g smooth, $f \circ g$ is smooth.

Defn: $f: M \to N$ is a *diffeomorphism* if f is a homeomorphism and if f and f^{-1} are smooth. M and N are *diffeomorphic* if there exists a diffeomorphism $f: M \to N$.

Prop 1.2.9: Let M and N be smooth manifolds, and let $\{U_{\alpha}, \phi_{\alpha}\}$ be the atlas for N. Suppose $f : M \to N$ is a diffeomorphism. Then $\{f^{-1}(U_{\alpha}), \phi_{\alpha} \circ f\}$ is the atlas for M.

1