HW 4 part 1

Thm 6.4 (Inverse Function Theorem): Suppose $F: W^{\text {open }} \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \in C^{r}$. Suppose for $\mathbf{a} \in W, \operatorname{det}(D F(a)) \neq 0$. Then there exists U such that $\mathbf{a} \in U^{\text {open }}, V=F(U)$ is open, and $F: U \rightarrow V$ is a C^{r}-diffeomorphism. Moreover, for $\mathbf{x} \in U$ and $\mathbf{y}=F(\mathbf{x}), D F_{\mathbf{y}}^{-1}=\left(D F_{\mathbf{x}}\right)^{-1}$

Proof: Recall from HW 3 part 2, we need to show (1.) F is $1: 1$ on some open set containing $\mathbf{0}$, (2.) F^{-1} is continuous, and (3.) $\frac{\left\|F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right\|}{\|\mathbf{y}-\mathbf{d}\|}$ is bounded for \mathbf{y}, \mathbf{d} in some neighorhood of $\mathbf{0}$.

You may either prove the above by continuing method 1 in HW 3 part 2 (see Spivak) or by the following method (Boothby).

Let $G(\mathbf{x})=\mathbf{x}-F(\mathbf{x}) . G(\mathbf{0})=$ \qquad , $D G(\mathbf{0})=$ \qquad $-\frac{\partial g_{i}}{\partial x_{j}}(\mathbf{0})=$ \qquad
Since $F \in C^{r}, G \in C^{r}$ and $\frac{\partial g_{i}}{\partial x_{j}}$ is continuous for all i, j.
1.) Use Theorem 2.2 to show that there exists $r>0$ such that $D F$ is nonsingular on the closed ball $\bar{B}_{2 r}(\mathbf{0})$ and for $\mathbf{x}_{1}, \mathbf{x}_{2} \in \bar{B}_{r}(\mathbf{0}),\left\|G\left(\mathbf{x}_{1}\right)-G\left(\mathbf{x}_{2}\right)\right\| \leq \frac{1}{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\left(\right.$ Eqn $\left.{ }^{*}\right)$
$\left\|G\left(\mathbf{x}_{1}\right)-G\left(\mathbf{x}_{2}\right)\right\|=\left\|\mathbf{x}_{1}-F\left(\mathbf{x}_{1}\right)-\mathbf{x}_{2}+F\left(\mathbf{x}_{2}\right)\right\|$
Thus $\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|-\left\|F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{2}\right)\right\| \leq\left\|\mathbf{x}_{1}-F\left(\mathbf{x}_{1}\right)-\mathbf{x}_{2}+F\left(\mathbf{x}_{2}\right)\right\| \leq \frac{1}{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|$
Hence $\frac{1}{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leq\left\|F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{2}\right)\right\|$ and thus

$$
\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leq 2\left\|F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{2}\right)\right\|(e q n * *)
$$

$\operatorname{By} \operatorname{Eqn}\left({ }^{*}\right),\left\|G\left(\mathbf{x}_{1}\right)-G\left(\mathbf{x}_{2}\right)\right\| \leq \frac{1}{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|$ for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \bar{B}_{2 r}(\mathbf{0})$,
Thus for $\mathbf{x} \in \bar{B}_{2 r}(\mathbf{0}),\|G(\mathbf{x})\|=\|G(\mathbf{x})-G(\mathbf{0})\| \leq \frac{1}{2}\|\mathbf{x}-\mathbf{0}\|=\frac{1}{2}\|\mathbf{x}\|$
Let $\mathbf{y} \in \bar{B}_{\frac{r}{2}}(\mathbf{0})$ and let $T_{\mathbf{y}}(\mathbf{x})=\mathbf{y}+\mathbf{x}-F(\mathbf{x})$.
Suppose $\mathbf{x} \in \bar{B}_{r}(\mathbf{0})$. Then $\left\|T_{\mathbf{y}}(\mathbf{x})-\mathbf{0}\right\|=\|\mathbf{y}+\mathbf{x}-F(\mathbf{x})\|=\|\mathbf{y}+G(\mathbf{x})\| \leq\|\mathbf{y}\|+\|G(\mathbf{x})\| \leq$ $\|\mathbf{y}\|+\frac{1}{2}\|\mathbf{x}\| \leq \frac{r}{2}+\frac{r}{2}=r$. Thus $T_{\mathbf{y}}(\mathbf{x}) \in \bar{B}_{r}(\mathbf{0})$.

Hence $T_{\mathbf{y}}: \bar{B}_{r}(\mathbf{0}) \rightarrow \bar{B}_{r}(\mathbf{0})$.
2.) Let $T_{\mathbf{y}}: \bar{B}_{r}(\mathbf{0}) \rightarrow \bar{B}_{r}(\mathbf{0}), T_{\mathbf{y}}(\mathbf{x})=\mathbf{y}+\mathbf{x}-F(\mathbf{x})$. Show that $T_{\mathbf{y}}$ has a unique fixed point iff there is a unique $\mathbf{x} \in \bar{B}_{r}(\mathbf{0})$ such that $F(\mathbf{x})=\mathbf{y}$

Thus if for each $y \in \bar{B}_{\frac{r}{2}}(\mathbf{0})$, the function $T_{\mathbf{y}}(\mathbf{x})$ has a unique fixed point, then F^{-1} exists on $\bar{B}_{\frac{r}{2}}(\mathbf{0})$

Claim: If $y \in \bar{B}_{\frac{r}{2}}(\mathbf{0}), T_{\mathbf{y}}: \bar{B}_{r}(\mathbf{0}) \rightarrow \bar{B}_{r}(\mathbf{0})$ has a unique fixed point

We will show that $T_{\mathbf{y}}$ is a contraction:
$\left\|T_{\mathbf{y}}\left(\mathbf{x}_{1}\right)-T_{\mathbf{y}}\left(\mathbf{x}_{2}\right)\right\|=\left\|\mathbf{y}+\mathbf{x}_{1}-F\left(\mathbf{x}_{1}\right)-\left(\mathbf{y}+\mathbf{x}_{2}-F\left(\mathbf{x}_{2}\right)\right)\right\|=\left\|\mathbf{x}_{1}-F\left(\mathbf{x}_{1}\right)-\left(\mathbf{x}_{2}-F\left(\mathbf{x}_{2}\right)\right)\right\|=$ $\left\|G\left(\mathbf{x}_{1}\right)-G\left(\mathbf{x}_{2}\right)\right\| \leq \frac{1}{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|$ by eqn $\left(^{*}\right)$.

Thus $T_{\mathbf{y}}$ is a contraction. $\bar{B}_{r}(\mathbf{0})$ is a complete metric space. Thus $T_{\mathbf{y}}$ has a unique fixed point by the Contracting Mapping Theorem.

Let $U=F^{-1}\left(B_{\frac{r}{2}}(\mathbf{0})\right)$. Since F is continuous, U is open. Let $V=B_{\frac{r}{2}}(\mathbf{0})$.
3.) Use eqn $\left({ }^{* *}\right)$ to show that $F^{-1}: V \rightarrow U$ is continuous and that $\frac{\left\|F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right\|}{\|\mathbf{y}-\mathbf{d}\|}$ is bounded for \mathbf{y}, \mathbf{d} in some neighorhood of $\mathbf{0}$.

