HW 3 part 2
Let $H_{1}(\mathbf{x})=F(\mathbf{x}+\mathbf{a})-F(\mathbf{a})$. Then $D H_{1}(\mathbf{0})=$
Let $H(\mathbf{x})=[D F(\mathbf{a})]^{-1} H_{1}(\mathbf{x})$
$H(\mathbf{0})=\quad$ and by the chain rule, $D H(\mathbf{0})=$
By 8,9 , and note, H is a diffeomorphism iff F is a diffeomorphism.
Thm 6.4 (Inverse Function Theorem): Suppose $F: W^{\text {open }} \subset \mathbf{R}^{n} \rightarrow R^{n} \in C^{r}$. Suppose for $\mathbf{a} \in W$, $\operatorname{det}(D F(a)) \neq 0$. Then there exists U such that $\mathbf{a} \in U^{\text {open }}, V=F(U)$ is open, and $F: U \rightarrow V$ is a C^{r}-diffeomorphism. Moreover, for $\mathbf{x} \in U$ and $\mathbf{y}=F(\mathbf{x}), D F_{\mathbf{y}}^{-1}=\left(D F_{\mathbf{x}}\right)^{-1}$

Proof:
Without loss of generality, assume $F(\mathbf{0})=\mathbf{0}$ and $D F(\mathbf{0})=I$
Claim: There exists a nbhd U_{1} of $\mathbf{0}$ such that $\left.F\right|_{U_{1}}$ is $1: 1$.
Method 1: Suppose for all $n \in \mathbf{N}$, there exists an $0<\mathbf{h}_{n}<\frac{1}{n}$ such that $F\left(\mathbf{h}_{n}\right)=F(\mathbf{0})$
Then $\frac{F\left(\mathbf{0}+\mathbf{h}_{n}\right)-F(\mathbf{0})-I \mathbf{h}_{n}}{\left\|\mathbf{h}_{n}\right\|}=$
But $\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{F(\mathbf{0}+\mathbf{h})-F(\mathbf{0})-I \mathbf{h}}{\|\mathbf{h}\|}=$
Hence

Claim: $D F_{\mathbf{y}}^{-1}=\left(D F_{\mathbf{x}}\right)^{-1}$ for \mathbf{y} in some nbhd V_{1} of $\mathbf{0}$.
Let $\mathbf{c} \in F^{-1}\left(V_{1}\right)$ and let $T=D F(c)$. Since F is differentiable, there exists $r(\mathbf{x}, \mathbf{c})$ such that

Let $\mathbf{y}=F(\mathbf{x})$ and $\mathbf{d}=F(\mathbf{c})$.
Then $\mathbf{y}-\mathbf{d}=T\left[F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right]+\left\|F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right\| r\left(F^{-1}(\mathbf{y}), F^{-1}(\mathbf{d})\right)$
Thus $F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})=T^{-1}(\mathbf{y}-\mathbf{d})-\left\|F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right\| T^{-1} r\left(F^{-1}(\mathbf{y}), F^{-1}(\mathbf{d})\right)$
Let $R(\mathbf{y}, \mathbf{d})=\frac{F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})-T^{-1}(\mathbf{y}-\mathbf{d})}{\|\mathbf{y}-\mathbf{d}\|}=-\frac{\left\|F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right\|}{\|\mathbf{y}-\mathbf{d}\|} T^{-1} r\left(F^{-1}(\mathbf{y}), F^{-1}(\mathbf{d})\right)$
IF F^{-1} is continuous, then $\lim _{\mathbf{y} \rightarrow \mathbf{d}} r\left(F^{-1}(\mathbf{y}), F^{-1}(\mathbf{d})\right)=$
IF $\frac{\left\|F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right\|}{\|\mathbf{y}-\mathbf{d}\|}$ is bounded, then $\lim _{\mathbf{y} \rightarrow \mathbf{d}} R(\mathbf{y}, \mathbf{d})=$
Hence $D F^{-1}(\mathbf{d})=$
Thus we need to show F^{-1} is continuous and $\frac{\left\|F^{-1}(\mathbf{y})-F^{-1}(\mathbf{d})\right\|}{\|\mathbf{y}-\mathbf{d}\|}$ is bounded.

