HW 3:

Let $F: \mathbf{R} \rightarrow \mathbf{R}^{2}, F(x)=(2,3) x$
$G: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}, G(x, y)=\left(x y, x^{2}, x+2 y+5\right)$
$H: \mathbf{R} \rightarrow \mathbf{R}^{2}, H(x)=\left(x^{2}, x^{3}\right)$
$k: \mathbf{R}^{2} \rightarrow \mathbf{R}, k(x, y)=x^{8}+5 x y$.
1.) Use the chain rule to calculate $D(G \circ F)_{2}$
2.) Use the product rule to calculate $D(F H)_{2}$
3.) Let $\mathbf{a}=(3,4)$. Let $X_{a}=9 E_{1 \mathbf{a}}-E_{2 \mathbf{a}}$. Then $X_{a}^{*}(k)=$
F is a C^{r}-diffeomorphism if
(1) F is a homeomorphism
(2) $F, F^{-1} \in C^{r}$
F is a diffeomorphism if F is a C^{∞}-diffeomorphism.
4.) Give an example of a homeomorphism which is analytic (ie C^{∞} and near $a, f(x)=f(a)+$ $f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots$, its Taylor series) which is not a diffeomorphism.
5.) Suppose $F^{\prime}(\mathbf{x})=\mathbf{0}$ for all $\mathbf{x} \in U^{\text {open }} \subset \mathbf{R}^{n}$. Show F cannot be a homeomorphism. What can you say about F (hint: MVT).
6.) Suppose $f: R \rightarrow R, f^{\prime}(x) \neq 0$ for all $x \in U$. Show that the derivative of f^{-1} exists for all $y \in f(U)$
7.) Suppose F is a C^{1}-diffeomorphism. Show that $D F_{x}$ is nonsingular (ie $\left.\operatorname{det}\left(D F_{x}\right) \neq 0\right) \forall x \in$ $\operatorname{dom}(F)$
8.) Ex 1: Show $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, F(\mathbf{x})=\mathbf{x}+\mathbf{a}$ is a diffeomorphism.
9.) Ex 2: Determine when $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, F(\mathbf{x})=A x$, where A is an $m \times n$ matrix, is a diffeomorphism. $D F_{x}=$.

Note that if F and G are diffeomorphism, then $F \circ G$ is a diffeomorphism (when $F \circ G$ is defined).
Thm 6.5 (Contracting mapping theorem): Let M be a complete metric space and let $T: M \rightarrow M$. Suppose there exists a constant $\lambda \in[0,1)$ such that for all $x, y \in M, d(T(x), T(y)) \leq \lambda d(x, y)$. Then T has a unique fixed point.

Proof: See class notes (Recall $T^{n}\left(x_{0}\right)$ is a Cauchy sequence. Since M be a complete metric space, $T^{n}\left(x_{0}\right)$ converges, say to a. Then $\left.d(T(a), a)=0\right)$.

Thm 6.4 (Inverse Function Theorem): Suppose $F: W^{\text {open }} \subset \mathbf{R}^{n} \rightarrow R^{n} \in C^{r}$. Suppose for $a \in W$, $\operatorname{det}\left(D F_{a}\right) \neq 0$. Then there exists U such that $a \in U^{\text {open }}, V=F(U)$ is open, and $F: U \rightarrow V$ is a C^{r}-diffeomorphism. Moreover, for $x \in U$ and $y=F(x), D F_{y}^{-1}=\left(D F_{x}\right)^{-1}$

