$T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)=\left\{(\mathbf{a}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{R}^{n}\right\}$
$\phi(\mathbf{a x})=\mathbf{x}-\mathbf{a}$
canonical basis $\left\{E_{i \mathbf{a}}=\phi^{-1}\left(e_{i}\right) \mid i=1, \ldots, n\right\}$
Let $C^{\infty}(a)=\left\{f: X \subset \mathbf{R}^{n} \rightarrow \mathbf{R} \in C^{\infty} \mid a \in \operatorname{dom} f\right\}$
$f \sim g$ if $\exists U^{\text {open }}$ s.t. $\mathbf{a} \in U$ and $f(x)=g(x) \forall x \in U$.
$f_{i}: U_{i} \rightarrow \mathbf{R} \in C^{\infty}(a)$ implies $f_{1}+f_{2}: U_{1} \cap U_{2} \rightarrow \mathbf{R} \in C^{\infty}(a)$ and $\alpha f_{i}: U_{i} \rightarrow \mathbf{R} \in C^{\infty}(a)$

Thus $C^{\infty}(a)$ is an algebra over \mathbf{R}
Let $X_{\mathbf{a}}=\sum_{i=1}^{n} \xi_{i} E_{i \mathbf{a}}$
$X_{\mathbf{a}}^{*}: C^{\infty}(\mathbf{a}) \rightarrow \mathbf{R}$
$X_{\mathbf{a}}^{*}(f)=\Sigma_{i=1}^{n} \xi_{i} \frac{\partial f}{\partial x_{i}} \mathbf{a}$
Let $x_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}, x_{j}(\mathbf{x})=x_{j}$
$X_{\mathbf{a}}^{*}\left(x_{j}\right)=\sum_{i=1}^{n} \xi_{i} \frac{\partial x_{j}}{\partial x_{i}} \mathbf{a}=\xi_{i}$
$X_{\mathbf{a}}^{*}$ is linear and satisfies the Leibniz rule.
Let $\mathcal{D}(a)=\left\{D: C^{\infty}(\mathbf{a}) \rightarrow \mathbf{R} \mid D\right.$ is linear and satisfies the Leibniz rule $\}$

Define $\left(\alpha D_{1}+\beta D_{2}\right)(f)=\alpha\left[D_{1}(f)\right]+\beta\left[D_{2}(f)\right]$
$\mathcal{D}(a)$ is closed under addition and scalar multiplication and hence is a vector space over \mathbf{R}

Let $j: T_{\mathbf{a}}\left(\mathbf{R}^{n}\right) \rightarrow \mathcal{D}(a), j\left(X_{\mathbf{a}}\right)=X_{\mathbf{a}}^{*}$
Claim: j is an isomorphism.
Let $X_{\mathbf{a}}=\sum_{i=1}^{n} \xi_{i} E_{i \mathbf{a}}$ and $Z_{\mathbf{a}}=\sum_{i=1}^{n} \zeta_{i} E_{i \mathbf{a}}$
j is a homomorphism.
j is 1-1:
If $j\left(X_{\mathbf{a}}\right)=j\left(Z_{\mathbf{a}}\right)$, then $X_{\mathbf{a}}^{*}\left(x_{j}\right)=\Sigma_{i=1}^{n} \xi_{i} \frac{\partial x_{j}}{\partial x_{i} \mathbf{a}}=\xi_{i}=\zeta_{i}=Z_{\mathbf{a}}^{*}\left(x_{j}\right)$
j is onto:
Let D be a derivation.
Suppose $f(\mathbf{x})=1$. Then $D f=0$
Suppose $g(\mathbf{x})=c$. Then $D g=D(c f)=c D f=0$
Let $h_{i}(\mathbf{x})=x_{i}$. Let $\xi_{i}=D h_{i}$. Then $D=X_{\mathbf{a}}^{*}$ where $X_{\mathbf{a}}=$ $\sum_{i=1}^{n} \xi_{i} E_{i \mathbf{a}}$ (proof: long calculation, see Boothby).

Note since $X_{\mathbf{a}}^{*}(f)=\sum_{i=1}^{n} \xi_{i} \frac{\partial f}{\partial x_{i} \mathbf{a}}, j\left(E_{i \mathbf{a}}\right)=$

