Thm 2.3 (Chain rule): Suppose $U \subset R^{m}$ is open and $f: U \rightarrow$ $V \subset \mathbf{R}^{m}, g: V \rightarrow \mathbf{R}^{p}$. Let $h=g \circ f$. Suppose f is differentiable at $a \in U$ and g is differentiable at $f(a) \in V$. Then h is differentiable at $a \in U$ and $D(h)_{a}=D(G)_{f(a)} D(f)_{a}$.

Let $R_{h}(\mathbf{x}, \mathbf{a})=\frac{g(f(\mathbf{x}))-g(f(\mathbf{a}))-D(G)_{f(a)} D(f)_{a}(\mathbf{x}-\mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}$
Let $\mathbf{y}=f(\mathbf{x}), \mathbf{b}=f(\mathbf{a})$
$R_{g}(\mathbf{y}, \mathbf{b})=\frac{g(\mathbf{y})-g(\mathbf{b})-D(G)_{\mathbf{b}}(\mathbf{y}-\mathbf{b})}{\|\mathbf{y}-\mathbf{b}\|}$ where $\lim _{\mathbf{x} \rightarrow \mathbf{a}} R_{g}(\mathbf{y}, \mathbf{b})=0$
$R_{f}(\mathbf{x}, \mathbf{a})=\frac{f(\mathbf{x})-f(\mathbf{a})-D(f)_{a}(\mathbf{x}-\mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}$ where $\lim _{\mathbf{x} \rightarrow \mathbf{a}} R_{f}(\mathbf{x}, \mathbf{a})=0$
$\mathbf{y}-\mathbf{b}=f(\mathbf{x})-f(\mathbf{a})=D(f)_{a}(\mathbf{x}-\mathbf{a})+\|\mathbf{x}-\mathbf{a}\| R_{f}(\mathbf{x}, \mathbf{a})$
$R_{g}(\mathbf{y}, \mathbf{b})=\frac{g(f(\mathbf{x}))-g(f(\mathbf{a}))-D(G)_{\mathbf{b}}\left[D(f)_{a}(\mathbf{x}-\mathbf{a})+\|\mathbf{x}-\mathbf{a}\| R_{f}(\mathbf{x}, \mathbf{a})\right]}{\|\mathbf{y}-\mathbf{b}\|}$
$\frac{\|\mathbf{y}-\mathbf{b}\| R_{g}(\mathbf{y}, \mathbf{b})}{\|\mathbf{x}-\mathbf{a}\|}=\frac{g(f(\mathbf{x}))-g(f(\mathbf{a}))-D(G)_{\mathbf{b}} D(f)_{a}(\mathbf{x}-\mathbf{a})-D(G)_{\mathbf{b}}\|\mathbf{x}-\mathbf{a}\| R_{f}(\mathbf{x}, \mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}$
$\frac{\|\mathbf{y}-\mathbf{b}\| R_{g}(\mathbf{y}, \mathbf{b})+D(G)_{\mathbf{b}}\|\mathbf{x}-\mathbf{a}\| R_{f}(\mathbf{x}, \mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}=\frac{g(f(\mathbf{x}))-g(f(\mathbf{a}))-D(G)_{\mathbf{b}} D(f)_{a}(\mathbf{x}-\mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}$
$R_{h}(\mathbf{x}, \mathbf{a})=\frac{\|\mathbf{y}-\mathbf{b}\| R_{g}(\mathbf{y}, \mathbf{b})+D(G)_{\mathbf{b}}\|\mathbf{x}-\mathbf{a}\| R_{f}(\mathbf{x}, \mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}$
$R_{h}(\mathbf{x}, \mathbf{a})=\frac{\|f(\mathbf{x})-f(\mathbf{a})\| R_{g}(\mathbf{y}, \mathbf{b})}{\|\mathbf{x}-\mathbf{a}\|}+D(G)_{\mathbf{b}} R_{f}(\mathbf{x}, \mathbf{a})$
$R_{h}(\mathbf{x}, \mathbf{a})=\frac{\left\|D(f)_{a}(\mathbf{x}-\mathbf{a})+\right\| \mathbf{x}-\mathbf{a}\left\|R_{f}(\mathbf{x}, \mathbf{a})\right\| R_{g}(\mathbf{y}, \mathbf{b})}{\|\mathbf{x}-\mathbf{a}\|}+D(G)_{\mathbf{b}} R_{f}(\mathbf{x}, \mathbf{a})$

Cor 2.4: If $f, g \in C^{r}$ on U, V respectively, then $h=g \circ f \in \mathbf{C}^{r}$.
Proof by induction:
$\mathrm{r}=1$: Suppose $f, g \in C^{1}$ on U, V respectively.
Then $\frac{\partial f}{\partial x_{i}}$ exists and is continuous on U
Then $\frac{\partial g}{\partial x_{i}}$ exists and is continuous on V.
By Thm 1.3, f, g are differentiable on U, V respectively.
Hence by Thm 1.1, f is continuous. By Thm $2.3 h=g \circ f$ is differentiable.

Thus by Thm 1.1, $\frac{\partial h}{\partial x_{i}}$ exist.
By Thm 2.3 it's Jacobian is $D(h)_{x}=D(g)_{f(x)} D(f)_{x}$.
Since $\frac{\partial f_{i}}{\partial x_{j}}$ are continuous on U for all i, j, each entry of $D(f)_{x}=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ is continuous

Since $\frac{\partial g_{i}}{\partial x_{j}}$ are continuous on V for all i, j and f is continuous, each entry of $D(g)_{f(x)}=\left(\left.\frac{\partial g_{i}}{\partial x_{j}}\right|_{f(x)}\right)$ is continuous.

Since the sums and products of continuous functions are continuous, each entry of $D(h)_{a}=D(G)_{f(a)} D(f)_{a}$ is continuous.

