Defn: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Define $g_{i j}: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$, $g_{i j}(t)=f_{i}\left(x_{1}, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_{n}\right)$. If g is differentiable at a, then the partial derivative of f_{i} is defined by
$\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f_{i}\left(a_{1}, \ldots, a_{j-1}, a_{j}+h, a_{j+1}, \ldots, a_{n}\right)-f_{i}\left(a_{1}, \ldots, a_{j-1}, a_{j}, a_{j+1}, \ldots, a_{n}\right)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{f_{i}\left(\mathbf{a}+h \mathbf{e}_{\mathbf{j}}\right)-f_{i}(\mathbf{a})}{h}
$$

Ex: $f: \mathbf{R}^{2} \rightarrow \mathbf{R}, f(x, y)= \begin{cases}0 & (\mathrm{x}, \mathrm{y})=(0,0) \\ \frac{x y}{x^{2}+y^{2}} & \text { otherwise }\end{cases}$
$\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$
$\frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$
BUT f is not continuous at $(0,0)!!!!!!!!!$
Defn: Suppose $f: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$. The derivative of f at the point a is $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ if above limit exists.
$f^{\prime}(a)$ is the derivative of f at x if

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a) h}{h} & =0 \\
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{(x-a)} & =0
\end{aligned}
$$

$y=f^{\prime}(a)[x-a]+f(a)$ is the linear approximation of f near a.

Defn: Let V and W be vector spaces. A linear transformation from V to W is a function $T: V \rightarrow W$ that satisfies the following two conditions. For each \mathbf{u} and \mathbf{v} in V and scalar a,
i.) $T(a \mathbf{u})=a T(\mathbf{u})$
ii.) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$

Thm: Let $T: V \rightarrow W$ be a linear transformation. Then $T(\mathbf{0})=\mathbf{0}$ Pf: $T(\mathbf{0})=T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})$

Thm: Let A be an $m \times n$ matrix. Then the function

$$
\begin{gathered}
T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \\
T(\mathbf{x})=A \mathbf{x}
\end{gathered}
$$

is a linear transformation.
Thm: If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear transformation, then $T(\mathbf{x})=$ $A \mathrm{x}$ where

$$
A=\left[T\left(\mathbf{e}_{\mathbf{1}}\right) \ldots T\left(\mathbf{e}_{\mathbf{n}}\right)\right]
$$

Ex: If $T: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $T(1,0)=3, T(0,1)=4$, then

$$
T(x, y)=x T(1,0)+y T(0,1)=(3,4)\binom{x}{y}=3 x+4 y
$$

Defn: Suppose $f: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ is differentiable at a. Then

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a) h}{h}=0 \\
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{(x-a)}=0
\end{gathered}
$$

Defn: Suppose $A \subset \mathbf{R}^{n}, f: A \rightarrow \mathbf{R}^{m}$.
f is said to be differentiable at a point a if there exists an open ball V such that $a \in V \subset A$ and a linear function T such that

$$
\begin{aligned}
& \lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-T(\mathbf{h})\|}{\|\mathbf{h}\|}=0 \\
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\|f(\mathbf{x})-f(\mathbf{a})-T(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0
\end{aligned}
$$

Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$.
Then $T=\left(b_{1}, \ldots, b_{n}\right)$ and $T \mathbf{x}=\left(b_{1}, \ldots, b_{n}\right)\left(\begin{array}{c}x_{1} \\ x_{1} \\ \ldots \\ x_{n}\end{array}\right)=\Sigma b_{i} x_{i}$

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\left\|f(\mathbf{x})-f(\mathbf{a})-\Sigma b_{i}\left(x_{i}-a_{i}\right)\right\|}{\|\mathbf{x}-\mathbf{a}\|}=0
$$

$f: \mathbf{R} \rightarrow \mathbf{R}:$

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{(x-a)}=0
$$

$y=f^{\prime}(a)[x-a]+f(a)$ is the linear approximation of f near a.
$\frac{d f}{d x}(a)=f^{\prime}(a)$
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}:$

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-f(\mathbf{a})-\Sigma b_{i}\left(x_{i}-a_{i}\right)}{\|\mathbf{x}-\mathbf{a}\|}=0
$$

$y=f(\mathbf{a})+\Sigma b_{i}\left(x_{i}-a_{i}\right)$ approximates $y=f(\mathbf{x})$
$f(\mathbf{x})=f(\mathbf{a})+\Sigma b_{i}\left(x_{i}-a_{i}\right)+\|\mathbf{x}-\mathbf{a}\| r(\mathbf{x}, \mathbf{a})$ where $\lim _{\mathbf{x} \rightarrow \mathbf{a}} r(\mathbf{x}, \mathbf{a})=0$
$(d f)_{a}=\Sigma b_{i}\left(x_{i}-a_{i}\right)$
Mean Value Theorem: Suppose
1.) f continuous on $[a, b]$
2.) f differentiable on (a, b)

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
http://www.geometrygames.org/
http://www.geometrygames.org/SoS/

