Urysohn Lemma: If X is normal then for any A, B disjoint closed sets in X, there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$

Proof: Suppose A, B disjoint closed sets in X,
Note by listing \mathcal{Q}, we can do induction on the rationals, defining a U_{q} for each rational number (or in our case $\mathcal{Q} \cap[0,1]$

Choose a bijective function $g: \mathcal{N} \rightarrow \mathcal{Q} \cap[0,1]$ such that $g(1)=1$ and $g(2)=0$. Let $g(n)=q_{n}$

Define $U_{i}=X$ for all $i>1$.
$q_{1}=1$: \quad Define $U_{1}=X-B$
$q_{2}=0: \quad$ Since X is normal, there exists an open set U_{0} such that $A \subset U_{0} \subset \overline{U_{0}} \subset U_{1}$.

Similarly there exists an open set $U_{q_{3}}$ such that

$$
\overline{U_{0}} \subset U_{q_{3}} \subset \overline{U_{q_{3}}} \subset U_{1} .
$$

Suppose $U_{q_{1}}, \ldots, U_{q_{n-1}}$ have been defined such that $U_{q_{i}}$ is open and if $q_{i}<q_{j}$ then $\overline{U_{q_{i}}} \subset U_{q_{j}}$

Define $U_{q_{n}}$:

$$
\begin{aligned}
& \text { Let } s=\max \left\{q_{i} \mid q_{i}<q_{n}, i=1, \ldots, n-1\right\} \\
& \text { Let } t=\min \left\{q_{i} \mid q_{i}>q_{n}, i=1, \ldots, n-1\right\}
\end{aligned}
$$

Since X is normal, there exists an open set $U_{q_{n}}$ s. t.

$$
\overline{U_{s}} \subset U_{q_{n}} \subset \overline{U_{q_{n}}} \subset U_{t} .
$$

Thus if $q_{n}<q_{i}$, then $q_{n}<t \leq q_{i}$.

$$
\text { Thus } \overline{U_{q_{n}}} \subset \overline{U_{t}} \subset \overline{U_{t}} \subset U_{q_{i}}
$$

Thus if $q_{i}<q_{n}$, then $q_{i} \leq s<q_{n}$.

$$
\text { Thus } \overline{U_{q_{i}}} \subset U_{s} \subset \overline{U_{s}} \subset U_{q_{n}}
$$

Hence we have defined U_{p} for all $p \in \mathcal{Q} \cup[0, \infty)$ such that U_{p} is open for all p and if $p<q$ then $\overline{U_{p}} \subset U_{q}$.

Define $f: X \rightarrow \mathcal{R}$ by

$$
f(x)=\inf \left\{p \mid x \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\}
$$

Note infimum exists since
$x \in X=U_{1.1}$ implies $1.1 \in\left\{p \mid x \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\}$ and $\left\{p \mid x \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\}$ is bounded below by 0 .

If $x \in A$, then $x \in U_{0}$.
Thus $f(x)=\inf \left\{p \mid x \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\}=0$
If $x \in B$, then $x \in U_{p}=X \forall p>1$. But $x \notin U_{1}=X-B$. Since $\overline{U_{q}} \subset U_{1}$ for all $q<1, x \notin U_{q}$ for all $q \leq 1$.

Thus $f(x)=\inf \left\{p \mid x \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\}=1$
Since $x \in U_{p}=X$ for all $p>1$.

$$
f(x)=\inf \left\{p \mid x \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\} \leq 1 \forall x \in X .
$$

Since $\inf \{p \mid p \in \mathcal{Q} \cap[0, \infty)\}=0$,

$$
\inf \left\{p \mid x \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\} \geq 0 \text { for all } x \in X
$$

Thus $f(X) \subset[0,1]$ and hence $f: X \rightarrow[0,1]$.
Claim: $f: X \rightarrow[0,1]$ is continuous.
$f: X \rightarrow[0,1]$. is continuous if and only if $f: X \rightarrow \mathcal{R}$ is continuous.

Claim: $f: X \rightarrow \mathcal{R}$ is continuous.
Take $(a, b) \subset \mathcal{R}$ and $x \in f^{-1}(a, b)$. Then $f(x) \in(a, b)$.
Take $p, q \in \mathcal{Q}$ such that $a<p<f(x)<q<b$.
Claim: $x \in U_{q}-\overline{U_{p}} \subset f^{-1}(a, b)$.
subclaim 1: $z \in \overline{U_{r}}$ implies $f(z) \leq r$
Suppose $z \in \overline{U_{r}}$. If $s>r$, then $z \in \overline{U_{r}} \subset U_{s}$
Hence $f(z)=\inf \left\{p \mid z \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\}$

$$
\leq \inf \{s \in \mathcal{Q} \mid s>r\}=r
$$

subclaim 2: $z \notin U_{r}$ implies $f(z) \geq r$.
Suppose $z \notin U_{r}$. If $s<r$, then $\overline{U_{s}} \subset U_{r}$.
Then $z \notin U_{r}$ implies $z \notin U_{s}$.
Thus r is a lower bound for $\left\{p \mid z \in U_{p}, p \in \mathcal{Q} \cap[0, \infty)\right\}$.
Hence $f(z) \geq r$.
Thus
$\left(f(z)>r\right.$ implies $\left.z \notin \overline{U_{r}}\right) \&\left(f(z)<r\right.$ implies $\left.z \in U_{r}\right)$.
Hence $p<f(x)<q$ implies $x \in U_{q}-\overline{U_{p}}$
If $z \in \overline{U_{q}}-\overline{U_{p}}$, then $z \in \overline{U_{q}}$ and hence $f(z) \leq q<b$. Also, $z \notin \overline{U_{p}}$ implies $z \notin U_{p}$, and hence $f(z) \geq p>a$. Thus $f(z) \in(a, b)$ and $U_{q}-\overline{U_{p}} \subset f^{-1}(a, b) . \quad U_{q}-\overline{U_{p}}$ is open.
Hence f is continuous.

Defn: If $f: X \rightarrow[0,1]$ is a fn s. t. $f(A)=\{0\} \& f(B)=$ $\{1\}$ for $A, B \subset X$, then f is said to separate $A \& B$.

Suppose X is T_{1}. Then X is T_{4} iff for each pair of disjoint closed subsets of X, there exists a continuous function $f: X \rightarrow[0,1]$ which separates them.

Defn: X is completely regular (or $T_{3.5}$) if X is T_{1} and for each $x \in X$ and for each closed set A in X such that $x \notin A$, there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(A)=\{0\}$ and $f\left(x_{0}\right)=1$
36: Imbeddings of Manifolds
X is locally Euclidean if for all $x \in X$, there exists U open such that $x \in U$, and there exists a homeomorphism $f: U \rightarrow f(U) \subset \mathbf{R}^{m}$ where $f(U)$ is open in \mathbf{R}^{m}.

Ex: $(0,1)$ is locally Euclidean, but $[0,1]$ is NOT locally Euclidean.
X is an m-manifold if
(1) X is locally Euclidean
(2) X is T_{2}
(3) X 2nd countable.

A 1-manifold is a curve (ex: the circle S^{1})
A 2-manifold is a surface
Orientable surfaces: sphere S^{2}, torus T^{2}, connected sum of tori $T^{2} \# \ldots \# T^{2}$, Non-orientable surfaces: projective plane $\mathbf{R} P^{2}$, Klein bottle, $\mathbf{R} P^{2} \# \mathbf{R} P^{2}$,
connected sum of projective planes $\mathbf{R} P^{2} \# \ldots \# \mathbf{R} P^{2}$.

