Urysohn Lemma: If X is normal then for any A, B disjoint closed sets in X, there exists a continuous function $f: X \to [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$

Proof: Suppose A, B disjoint closed sets in X,

Note by listing Q, we can do induction on the rationals, defining a U_q for each rational number (or in our case $Q \cap [0,1]$

Choose a bijective function $g : \mathcal{N} \to \mathcal{Q} \cap [0, 1]$ such that g(1) = 1 and g(2) = 0. Let $g(n) = q_n$

Define $U_i = X$ for all i > 1. $q_1 = 1$: Define $U_1 = X - B$

 $q_2 = 0$: Since X is normal, there exists an open set U_0 such that $A \subset U_0 \subset \overline{U_0} \subset U_1$.

Similarly there exists an open set U_{q_3} such that $\overline{U_0} \subset U_{q_3} \subset \overline{U_{q_3}} \subset U_1.$

Suppose $U_{q_1}, ..., U_{q_{n-1}}$ have been defined such that U_{q_i} is open and if $q_i < q_j$ then $\overline{U_{q_i}} \subset U_{q_j}$

Define U_{q_n} : Let $s = max\{q_i \mid q_i < q_n, i = 1, ..., n - 1\}$ Let $t = min\{q_i \mid q_i > q_n, i = 1, ..., n - 1\}$ Since X is normal, there exists an open set U_{q_n} s. t. $\overline{U_s} \subset U_{q_n} \subset \overline{U_{q_n}} \subset U_t$.

Thus if $q_n < q_i$, then $q_n < t \leq q_i$. Thus $\overline{U_{q_n}} \subset U_t \subset \overline{U_t} \subset U_{q_i}$ Thus if $q_i < q_n$, then $q_i \leq s < q_n$. Thus $\overline{U_{q_i}} \subset U_s \subset \overline{U_s} \subset U_{a_{\neg}}$ Hence we have defined U_p for all $p \in \mathcal{Q} \cup [0, \infty)$ such that U_p is open for all p and if p < q then $\overline{U_p} \subset U_q$. Define $f: X \to \mathcal{R}$ by $f(x) = \inf\{p \mid x \in U_n, \ p \in \mathcal{Q} \cap [0, \infty)\}$ Note infimum exists since $x \in X = U_{1,1}$ implies $1.1 \in \{p \mid x \in U_p, p \in \mathcal{Q} \cap [0,\infty)\}$ and $\{p \mid x \in U_p, p \in \mathcal{Q} \cap [0, \infty)\}$ is bounded below by 0. If $x \in A$, then $x \in U_0$. Thus $f(x) = inf\{p \mid x \in U_n, p \in \mathcal{Q} \cap [0, \infty)\} = 0$ If $x \in B$, then $x \in U_p = X \forall p > 1$. But $x \notin U_1 = X - B$. Since $\overline{U_q} \subset U_1$ for all $q < 1, x \notin U_q$ for all $q \leq 1$. Thus $f(x) = inf\{p \mid x \in U_p, p \in \mathcal{Q} \cap [0, \infty)\} = 1$ Since $x \in U_p = X$ for all p > 1. $f(x) = \inf\{p \mid x \in U_n, \ p \in \mathcal{Q} \cap [0, \infty)\} \le 1 \ \forall x \in X.$ Since $inf\{p \mid p \in \mathcal{Q} \cap [0,\infty)\} = 0$, $inf\{p \mid x \in U_n, p \in \mathcal{Q} \cap [0,\infty)\} > 0 \text{ for all } x \in X.$ Thus $f(X) \subset [0,1]$ and hence $f: X \to [0,1]$. Claim: $f: X \to [0, 1]$ is continuous.

 $f: X \to [0,1]$. is continuous if and only if $f: X \to \mathcal{R}$ is continuous.

Claim: $f: X \to \mathcal{R}$ is continuous.

Take $(a, b) \subset \mathcal{R}$ and $x \in f^{-1}(a, b)$. Then $f(x) \in (a, b)$. Take $p, q \in \mathcal{Q}$ such that a .

Claim: $x \in U_q - \overline{U_p} \subset f^{-1}(a, b)$.

subclaim 1: $z \in \overline{U_r}$ implies $f(z) \leq r$ Suppose $z \in \overline{U_r}$. If s > r, then $z \in \overline{U_r} \subset U_s$ Hence $f(z) = inf\{p \mid z \in U_p, \ p \in \mathcal{Q} \cap [0, \infty)\}$ $\leq inf\{s \in \mathcal{Q} \mid s > r\} = r$

subclaim 2: $z \notin U_r$ implies $f(z) \geq r$. Suppose $z \notin U_r$. If s < r, then $\overline{U_s} \subset U_r$. Then $z \notin U_r$ implies $z \notin U_s$. Thus r is a lower bound for $\{p \mid z \in U_p, p \in \mathcal{Q} \cap [0, \infty)\}$. Hence $f(z) \geq r$.

Thus

 $(f(z) > r \text{ implies } z \notin \overline{U_r}) \& (f(z) < r \text{ implies } z \in U_r).$

Hence p < f(x) < q implies $x \in U_q - \overline{U_p}$

If $z \in U_q - \overline{U_p}$, then $z \in \overline{U_q}$ and hence $f(z) \leq q < b$. Also, $z \notin \overline{U_p}$ implies $z \notin U_p$, and hence $f(z) \geq p > a$. Thus $f(z) \in (a, b)$ and $U_q - \overline{U_p} \subset f^{-1}(a, b)$. $U_q - \overline{U_p}$ is open. Hence f is continuous. Defn: If $f : X \to [0, 1]$ is a fn s. t. $f(A) = \{0\}\& f(B) = \{1\}$ for $A, B \subset X$, then f is said to separate A&B.

Suppose X is T_1 . Then X is T_4 iff for each pair of disjoint closed subsets of X, there exists a continuous function $f: X \to [0, 1]$ which separates them.

Defn: X is completely regular (or $T_{3.5}$) if X is T_1 and for each $x \in X$ and for each closed set A in X such that $x \notin A$, there exists a continuous function $f: X \to [0, 1]$ such that $f(A) = \{0\}$ and $f(x_0) = 1$

36: Imbeddings of Manifolds

X is *locally Euclidean* if for all $x \in X$, there exists U open such that $x \in U$, and there exists a homeomorphism $f: U \to f(U) \subset \mathbf{R}^m$ where f(U) is open in \mathbf{R}^m .

Ex: (0,1) is locally Euclidean, but [0,1] is NOT locally Euclidean.

- X is an m-manifold if (1) X is locally Euclidean
- (2) X is T_2
- (3) X 2nd countable.

A 1-manifold is a *curve* (ex: the circle S^1)

A 2-manifold is a *surface*

Orientable surfaces: sphere S^2 , torus T^2 , connected sum of tori $T^2 \# ... \# T^2$, Non-orientable surfaces: projective plane $\mathbb{R}P^2$, Klein bottle, $\mathbb{R}P^2 \# \mathbb{R}P^2$, connected sum of projective planes $\mathbb{R}P^2 \# ... \# \mathbb{R}P^2$.