p91: 4, 6
4.) Let W be open in $X \times Y$.

Show $\pi_{1}(W)$ is open in X.
Let $x_{0} \in \pi_{1}(W)$. Find U open in X such that $x_{0} \in U \subset \pi_{1}(W)$.
$x_{0} \in \pi_{1}(W)$ implies there exists an $\left(x_{0}, y_{0}\right) \in W$ such that $\pi_{1}\left(x_{0}, y_{0}\right)=x_{0} . W$ open implies there exists a basis element $U \times V$ where U is open in X and V is open in Y and $\left(x_{0}, y_{0}\right) \in U \times V \subset W$ Thus $\pi_{1}\left(\left(x_{0}, y_{0}\right)\right) \in \pi_{1}(U \times V) \subset \pi_{1}(W)$. Hence $x_{0} \in U \subset \pi_{1}(W)$.
6.) R^{2} has the product topology. Thus by thm $15.1,\left\{B_{1} \times B_{2} \mid B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}\right\}$ is basis for R^{2} where \mathcal{B}_{i} are bases for R. By problem \#8, p. $83, \mathcal{B}=\{(a, b) \mid a<b, a$ and b rational $\}$ is a basis for R. Thus $\{(a, b) \times(c, d) \mid a<b$ and $c<d, a, b, c, d$ rational $\}$ is a basis for R^{2}.
p91: 1, 3, 8
1.) Let \mathcal{T}_{X} be the topology on X.

Let $\mathcal{T}_{Y}=\left\{Y \cap U \mid U \in \mathcal{T}_{X}\right\}$
Let $\mathcal{T}_{A}=\left\{A \cap U \mid U \in \mathcal{T}_{X}\right\}$
Let $\mathcal{T}_{A}^{\prime}=\left\{A \cap U \mid U \in \mathcal{T}_{Y}\right\}$
Show $\mathcal{T}_{A}=\mathcal{T}_{A}^{\prime}$
Let $W \in \mathcal{T}_{A}$. Then there exists a $U \in \mathcal{T}_{X}$ such that $W=A \cap U . U \in \mathcal{T}_{X}$ implies $Y \cap U \in \mathcal{T}_{Y}$. Since $A \subset Y, A \cap(Y \cap U)=(A \cap Y) \cap U=A \cap U=W$. Thus $W \in \mathcal{T}_{A}^{\prime}$.

Hence $\mathcal{T}_{A} \subset \mathcal{T}_{A}^{\prime}$
Let $W \in \mathcal{T}_{A}^{\prime}$. Then there exists a $U \in \mathcal{T}_{Y}$ such that $W=A \cap U . U \in \mathcal{T}_{Y}$ implies there exists a $V \in \mathcal{T}_{X}$ such that $U=Y \cap V$. Since $A \subset Y, W=A \cap U=A \cap Y \cap V=A \cap V$. Thus $W \in \mathcal{T}_{A}$.

Hence $\mathcal{T}_{A}^{\prime} \subset \mathcal{T}_{A}$
Therefore $\mathcal{T}_{A}=\mathcal{T}_{A}^{\prime}$
3.) A and E are open in $R . B, C, D$ are not open in $R . A, B, E$ are open in $[-1,1] . C, D$ are not open in $[-1,1]$.
$A=\left(-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)$ is open in R since A is the union of two basis element.
$B=\left[-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]$. Show B is not open in R. Show that there exists an $x \in B$ such that for all basis elements, B_{x} such that $x \in B_{x}, B_{x} \not \subset B$.

Let $x=1$. Suppose $1 \in(a, b)$. Thus $a<1<b$. Hence $a<1<\frac{1+b}{2}<b$. Thus $\frac{1+b}{2} \in(a, b)$, but $\frac{1+b}{2} \notin\left[-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]$. Thus, $(a, b) \not \subset B$. Thus B is not open.

Similarly $C\left(\right.$ take $\left.x=\frac{1}{2}\right)$ and $D\left(\right.$ take $x=\frac{1}{2}$ or 1$)$ are not open.

Take $x \in E=\left\{x\left|0<|x|<1\right.\right.$ and $\left.\frac{1}{x} \notin Z_{+}\right\}$. If $x<0$, then $x \in(-1,0) \subset E$. If $x \nless 0$. Then $x \neq \frac{1}{n}$ for any $n \in Z_{+}$and $x \neq 0$ since $x \in E$. Let $F=\left\{n \in Z_{+} \left\lvert\, \frac{1}{n}<x\right.\right\}$. Since F is bounded below by 0 , inf F exists in Z since Z has the greatest lower bound property. Let $N=\inf F$. Then $\frac{1}{N}<x$. $N-1<N$ implies that $N-1 \notin F$. Since $x<1, N \neq 1$, and thus $N-1 \in Z_{+}$. Hence $\frac{1}{N-1} \geq x$ and since $x \neq \frac{1}{N-1}, \frac{1}{N-1}>x$. Thus, $x \in\left(\frac{1}{N}, \frac{1}{N-1}\right) \subset E$. Thus E is open in R.

Alternate proof that E is open in $R . E=(-1,0) \cup\left[\cup_{n=1}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n}\right)\right]$. Thus E is open since it is the union of open sets.

Question: Can you prove that $E=(-1,0) \cup\left[\cup_{n=1}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n}\right)\right]$.
A open in R and $A=A \cap[-1,1]$ implies A is open in $[-1,1]$.
$\left(-3,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 5\right)$ open in R and $B=\left[\left(-3,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 5\right)\right] \cap[-1.1]$ implies B is open in $[-1.1]$.
$C=\left(-1,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right)$ Show C is not open. Show that there exists an $x \in C$ such that for all basis elements, B_{x} such that $x \in B_{x}, B_{x} \not \subset C$.

Let $x=\frac{1}{2}$. Suppose $\frac{1}{2} \in(a, b) \cap[-1,1]$. Let $a^{\prime}=\max \left\{a,-\frac{1}{2}\right\}$. Thus $a \leq a^{\prime}<\frac{1}{2}<b$. Hence $a<\frac{\frac{1}{2}+a^{\prime}}{2}<\frac{1}{2}<b$.

Also $-\frac{1}{2} \leq a^{\prime}<\frac{1}{2}$ implies $-1<-\frac{1}{2}<\frac{\frac{1}{2}+a^{\prime}}{2}<\frac{1}{2}<1$ Thus $\frac{\frac{1}{2}+a^{\prime}}{2} \in(a, b) \cap[-1,1]$, but $\frac{\frac{1}{2}+a^{\prime}}{2} \notin$ $\left(-1,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right)$. Thus, $(a, b) \cap[-1,1] \not \subset C$. Thus C is not open.

Similarly D is not open.
E open in R and $E=E \cap[-1,1]$ implies E is open in $[-1,1]$
8.) Let R^{2} have the topology generated by $\mathcal{T}_{X} \times \mathcal{T}_{Y}$.

Let L be a line with slope 0 . Then $L=R \times\left\{y_{0}\right\}$ for some $y_{0} \in R$. Note that $L=R \times\left\{y_{0}\right\}$ has the subspace topology by hypothesis. By thm 16.3, the subspace topology on $L=R \times\left\{y_{0}\right\}$ as a subspace of R^{2} is the same as the product topology on $R \times\left\{y_{0}\right\}$ where R is a subspace of $\left(R, \mathcal{T}_{X}\right)$ and $\left\{y_{0}\right\}$ is a subspace of $\left(R, \mathcal{T}_{Y}\right)$. Thus, $R \times\left\{y_{0}\right\}$ has the topology generated by $\left\{U \times V \mid U \in \mathcal{T}_{X}, V \in\left\{\emptyset,\left\{y_{0}\right\}\right\}\right\}$. Since $A \times \emptyset=\emptyset,\left\{U \times V \mid U \in \mathcal{T}_{X}, V \in\left\{\emptyset,\left\{y_{0}\right\}\right\}\right\}=\left\{U \times V \mid U \in \mathcal{T}_{X}, V=\left\{y_{0}\right\}\right\}$. Thus the topology on L is equivalent to \mathcal{T}_{X}. Thus L inherits the lower limit topology as a subspace of $R_{l} \times R$ and L inherits the lower limit topology as a subspace of $R_{l} \times R_{l}$.

Similarly if L is a line with vertical slope, the the topology on $L=\mathcal{T}_{Y}$. Thus L inherits the standard topology as a subspace of $R_{l} \times R$ and L inherits the lower limit topology as a subspace of $R_{l} \times R_{l}$.

Let R^{2} have the topology generated by $R \times R_{l}$.
Let L be a line with positive slope. Let $f(x)=m x+b$ where $m>0 . L=\{(x, f(x)) \mid x \in R\}$. $(a, b) \times[c, d)$ is a basis element for the topology generated by $R \times R_{l}$.

If $f(a) \geq d$ or $f(b) \leq c$, then
$\{(x, f(x)) \mid x \in R\} \cap(a, b) \times[c, d)=\emptyset$

If $f(a)<c$ and $f(b) \geq d$ then
$\{(x, f(x)) \mid x \in R\} \cap(a, b) \times[c, d)=\left[\left(f^{-1}(c), c\right),\left(f^{-1}(d), d\right)\right)$ where $\left[\left(f^{-1}(c), c\right),\left(f^{-1}(d), d\right)\right)=$ $\left\{(x, f(x)) \mid f^{-1}(c) \leq x<f^{-1}(d)\right\}$

If $f(a)<c, c<f(b) \leq d$ then
$\{(x, f(x)) \mid x \in R\} \cap(a, b) \times[c, d)=\left[\left(f^{-1}(c), c\right),(b, f(b))\right)$ where $\left[\left(f^{-1}(c), c\right),(b, f(b))\right)=\left\{(x, f(x)) \mid f^{-1}(c) \leq \square\right.$ $x<b$,

Thus since f is onto, every half open interval in L is open. Thus the topology on L is equal to or finer that the lower limit topology.

If $c \leq f(a)<d$ and $f(b) \geq d$ then
$\{(x, f(x)) \mid x \in R\} \cap(a, b) \times[c, d)=\left((a, f(a)),\left(f^{-1}(d), d\right)\right)$ where $\left((a, f(a)),\left(f^{-1}(d), d\right)\right)=\{(x, f(x)) \mid a<$ $\left.x<f^{-1}(d)\right\}$

If $c \leq f(a)<d, c<f(b) \leq d$ then
$\{(x, f(x)) \mid x \in R\} \cap(a, b) \times[c, d)=((a, f(a)),(b, f(b))$ where $((a, f(a)),(b, f(b))=\{(x, f(x)) \mid a<$ $x<b$,

Thus, every open interval in L is open. Note that open intervals are open in the lower limit topology.
Since we have determined for every possible intersection between L and basis elements of $R \times R_{l}$, the collection of half open intervals is a basis for the topology on L. Thus L inherits the lower limit topology as a subspace of $R \times R_{l}$

Similarly, L inherits the lower limit topology as a subspace of $R_{l} \times R_{l}$
Similarly, if L is a line with negative slope, L inherits the upper limit topology as a subspace of $R \times R_{l}$

Let R^{2} have the topology generated by $R_{l} \times R_{l}$
Let L be a line with negative slope. $L=\{(x, y) \mid y=m x+b\}$ where $m<0$. Let $f(x)=m x+b$. $[x, x+1) \times[f(x), f(x)+1) \cap L=\{(x, f(x))\}$.

Thus every point in L is open. Thus the topology on L is discrete topology.

