Homework 5 [adapted from latex HW of Colin McKinney]
5.6A Show that if $A \subset B$, then $\bar{A} \subset \bar{B}$.

Take $x \in \bar{A}$. By Theorem 17.5, every neighborhood U of x intersects A. Since $A \subset B, U$ also intersects B, which by Theorem 17.5 implies that $x \in \bar{B}$.
5.6B Show $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
$A \subset \bar{A}$ and $B \subset \bar{B}$. Hence, $\bar{A} \cup \bar{B}$ is a closed set containing $A \cup B$. Since $\overline{A \cup B}$ is the smallest closed set containing $A \cup B, \overline{A \cup B} \subset \bar{A} \cup \bar{B} . \bar{A} \cup \bar{B} \subset \overline{A \cup B}$ by 5.6C.
5.6C Show $\cup \overline{A_{\alpha}} \subset \overline{\cup A_{\alpha}}$; give an example where equality fails.

Fix $x \in \cup \overline{A_{\alpha}}$. This implies that $x \in \overline{A_{\alpha_{0}}}$ for some α_{0}. By Theorem 17.5, this implies that every neighborhood U of x intersects $A_{\alpha_{0}}$. Since $A_{\alpha_{0}} \subset \cup \underline{A_{\alpha}}$, we know that every neighborhood U of x intersects $\cup A_{\alpha}$. By Theorem 17.5, then, $x \in \overline{\cup A_{\alpha}}$. Hence $\cup \overline{A_{\alpha}} \subset \overline{\cup A_{\alpha}}$.

Specific counter-example where equality fails: $\cup_{q \in Q} \overline{\{q\}}=\cup_{q \in Q}\{q\}=Q$, but $\overline{\cup_{q \in Q}\{q\}}=\bar{Q}=R$
$8 A \cap B \subset A$. Hence $\overline{A \cap B} \subset \bar{A}$. Similarly $\overline{A \cap B} \subset \bar{B}$. Hence $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$
Alternatively, $\overline{A \cap B}$ is the smallest closed set containing $A \cap B . A \subset \bar{A}$ and $B \subset \bar{B}$. Hence $A \cap B \subset \bar{A} \cap \bar{B}$. Thus, $\bar{A} \cap \bar{B}$ is a closed set containing $A \cap B$. Hence $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$.

Specific counter-example where equality fails: $\bar{Q} \cap \overline{Q^{c}}=R \cap R=R$, but $\overline{Q \cap Q^{c}}=\bar{\emptyset}=\emptyset$.
$\cap A_{\alpha} \subset A_{\alpha_{0}}$. Hence $\overline{\cap A_{\alpha}} \subset \overline{A_{\alpha_{0}}}$ for all α_{0}. Hence $\overline{\cap A_{\alpha}} \subset \cap \overline{A_{\alpha}}$
Take $x \in \bar{A}-\bar{B}$. Take U open such that $x \in U . x \notin \bar{B}$ implies there exists an open set V such the $x \in V$ and $V \cap B=\emptyset . x \in U \cap V, U \cap V$ is open, $x \in \bar{A}$ implies there exists a $y \in(U \cap V) \cap A$. Suppose $y \in B$. Then $y \in B \cap V$, a contradiction. Hence $y \in A-B$. Thus $y \in U \cap(A-B)$. Hence $x \in \overline{A-B}$ and $\bar{A}-\bar{B} \subset \overline{A-B}$.

Specific counter-example where equality fails: $\bar{Q}-\overline{Q^{c}}=R-R=\emptyset$, but $\overline{Q-Q^{c}}=\bar{Q}=R$ or $\overline{[0,1]}-\overline{(0,1)}=$ $[0,1]-[0,1]=\emptyset$, but $\overline{[0,1]-(0,1)}=\overline{\{0,1\}}=\{0,1\}$.
5.11 Show that the product of two Hausdorff spaces is Hausdorff.

Let A and B be two Hausdorff spaces. Take $x_{1} \times y_{1}, x_{2} \times y_{2}$ in $A \times B$ such that $x_{1} \times y_{1} \neq x_{2} \times y_{2}$. Then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$. Without loss of generality assume $x_{1} \neq x_{2}$. Since A is Hausdorff, there exists U_{1}, U_{2} such that U_{1} is a neighborhood of x_{1} in A and U_{2} is a neighborhood of x_{2} in A, where U_{1} and U_{2} are disjoint. Then $U_{1} \times B$ will be a neighborhood of $x_{1} \times y_{1}$ in $A \times B$, and $U_{2} \times B$ will be a neighborhood of $x_{2} \times y_{2}$ in $A \times B$. Since U_{1} and U_{2} are disjoint, it follows that $U_{1} \times B$ and $U_{2} \times B$ are disjoint. Since we have found disjoint neighborhoods for two arbitrary points in $A \times B$, by the definition of Hausdorff, $A \times B$ is Hausdorff.
5.12 Show that a subspace of a Hausdorff spaces is Hausdorff.

Let X be a Hausdorff space, and let Y be a subspace of X. Let x_{1} and x_{2} be elements of Y such that $x_{1} \neq x_{2}$. Since X is Hausdorff, there exist disjoint neighborhoods U_{1} and U_{2} in X of x_{1} and x_{2}, respectively. Hence a set containing x_{1} in Y is $V_{1}=U_{1} \cap Y$, which is open in Y by definition of the subspace topology on Y. Thus V_{1} is a neighborhood of x_{1} in Y. Similarly, a set containing x_{2} in Y is $V_{2}=U_{2} \cap Y$, which is open in Y by the definition of the subspace topology on Y. Thus V_{2} is a neighborhood of x_{2} in Y. Now since $V_{1} \subset U_{1}$ and $V_{2} \subset U_{2}$, and U_{1} and U_{2} are disjoint, it follows that V_{1} and V_{2} are disjoint. Thus, Y is Hausdorff.

