HW 2 (p 83: 4, 8)
4a.) Since $\emptyset, X \in \mathcal{T}_{\alpha}$ for all $\alpha, \emptyset, X \in \cap \mathcal{T}_{\alpha}$
Suppose $U_{\beta} \in \cap \mathcal{T}_{\alpha}$ for all $\beta \in B$. Then $U_{\beta} \in \mathcal{T}_{\alpha}$ for all α, β. Since \mathcal{T}_{α} is a topology, $\cup_{\beta \in B} U_{\beta} \in \mathcal{T}_{\alpha}$ for all α. Thus $\cup_{\beta \in B} U_{\beta} \in \cap \mathcal{T}_{\alpha}$

Suppose $U_{i} \in \cap \mathcal{T}_{\alpha}$ for $i=1, \ldots, n$. Then $U_{i} \in \mathcal{T}_{\alpha}$ for all $\alpha, i=1, \ldots, n$. Since \mathcal{T}_{α} is a topology, $\cap_{i=1}^{n} U_{i} \in \mathcal{T}_{\alpha}$ for all α. Thus $\cap_{i=1}^{n} U_{i} \in \cap \mathcal{T}_{\alpha}$

Let $\mathcal{T}_{1}=\{\emptyset,\{a, b\},\{a, b, c\}\}$ and $\mathcal{T}_{2}=\{\emptyset,\{b, c\},\{a, b, c\}\}$. Then $\mathcal{T}_{1} \cup \mathcal{T}_{2}=\{\emptyset,\{a, b\},\{b, c\},\{a, b, c\}\}$. $\{a, b\} \cap\{b, c\}=\{b\} \notin \mathcal{T}_{1} \cup \mathcal{T}_{2}$. Thus, $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is not a topology.

4b.) Lemma: $\cap \mathcal{T}_{\alpha}$ is the unique largest topology contained in all the \mathcal{T}_{α}.
$\cap \mathcal{T}_{\alpha}$ is a topology contained in all the \mathcal{T}_{α}. Suppose \mathcal{T} is a topology contained in all the \mathcal{T}_{α}. Then $\mathcal{T} \subset \mathcal{T}_{\alpha}$ for all α implies $\mathcal{T} \subset \cap \mathcal{T}_{\alpha}$. Therefore $\cap \mathcal{T}_{\alpha}$ is larger than or equal to all other topologies contained in all the \mathcal{T}_{α} and thus $\cap \mathcal{T}_{\alpha}$ is the unique largest topology contained in all the \mathcal{T}_{α}.

Lemma: $\cup \mathcal{T}_{\alpha}$ is a subbasis for the unique smallest topology containing all the \mathcal{T}_{α}.
Since $X \in \mathcal{T}_{\alpha}, \cup_{U_{\beta} \in \cup \mathcal{T}_{\alpha}} U_{\beta}=X$. Thus, $\cup \mathcal{T}_{\alpha}$ is a subbasis.
Let \mathcal{T} be the topology generated by the subbasis $\cup \mathcal{T}_{\alpha}$. Suppose that \mathcal{T}^{\prime} is a topology containing all the \mathcal{T}_{α}. Then $\cup \mathcal{T}_{\alpha} \subset \mathcal{T}^{\prime}$. If $U \in \mathcal{T}$, then $U=\cup_{\beta \in B}\left(\cap_{i=1}^{n} U_{i, \beta}\right)$ where $U_{i, \beta} \in \cup \mathcal{T}_{\alpha} \subset \mathcal{T}^{\prime}$. Hence $U \in \mathcal{T}^{\prime}$, and thus $\mathcal{T} \subset \mathcal{T}^{\prime}$. Therefore \mathcal{T} is smaller than all or equal to other topologies containing all the \mathcal{T}_{α} and thus \mathcal{T} is the unique smallest topology containing all the \mathcal{T}_{α}.

4c.) The largest topology contained in \mathcal{T}_{1} and $\mathcal{T}_{2}=\mathcal{T}_{1} \cap \mathcal{T}_{2}=\{\emptyset,\{a\},\{a, b, c\}\}$. A subbasis for the largest topology containing \mathcal{T}_{1} and $\mathcal{T}_{2}=\mathcal{T}_{1} \cup \mathcal{T}_{2}=\{\emptyset,\{a\},\{a, b\},\{b, c\}\{a, b, c\}\}$. Thus, the largest topology containing \mathcal{T}_{1} and $\mathcal{T}_{2}=\{\emptyset,\{a\},\{b\},\{a, b\},\{b, c\},\{a, b, c\}\}$.

8a.) Let $\mathcal{B}=\{(a, b) \mid a<b, a$ and b rational $\}$. Since (a, b) is open for every $a<b, a$ and b rational, \mathcal{B} is a collection of open sets of R with the standard topology. Suppose that U is an open set in R and $x \in U$. Since $\mathcal{B}^{\prime}=\{(a, b) \mid a<b, a$ and b real numbersl $\}$ is a basis for the standard topology and U is open, there exists $a, b \in R, a<b$ such that $x \in(a, b) \subset U$. Since the rationals are dense in R, there exists c, d such that $a<c<x<d<b$. Thus $x \in(c, d) \subset U$. Since $(c, d) \in \mathcal{B}, \mathcal{B}$ is a basis for the standard topology.

8b.) Let \mathcal{T} be the topology generated by \mathcal{C}. [$\pi, 4$) is open in the lower limit topology since it is a basis element, but $[\pi, 4)$ is not open in $\mathcal{T} . \pi \in[\pi, 4)$. If $\pi \in[a, b)$ where a, b are rational, then $a \leq \pi<b$. Since a is rational and π is irrational, $a \neq \pi$. Thus $a<\pi<b$. Hence $\frac{a+\pi}{2} \in[a, b)$, but $\frac{a+\pi}{2} \notin[\pi, 4)$. Thus $[a, b) \not \subset[\pi, 4)$. Hence there does not exists a basis element, $[a, b)$ in \mathcal{C} such that $\pi \in[a, b) \subset[\pi, 4)$. Thus $[\pi, 4)$ is not open in \mathcal{T}.

