HW 2 (p 83: 4, 8)

4a.) Since $\emptyset, X \in \mathcal{T}_{\alpha}$ for all $\alpha, \emptyset, X \in \cap \mathcal{T}_{\alpha}$

Suppose $U_{\beta} \in \cap \mathcal{T}_{\alpha}$ for all $\beta \in B$. Then $U_{\beta} \in \mathcal{T}_{\alpha}$ for all α, β . Since \mathcal{T}_{α} is a topology, $\cup_{\beta \in B} U_{\beta} \in \mathcal{T}_{\alpha}$ for all α . Thus $\cup_{\beta \in B} U_{\beta} \in \cap \mathcal{T}_{\alpha}$

Suppose $U_i \in \cap \mathcal{T}_{\alpha}$ for i = 1, ..., n. Then $U_i \in \mathcal{T}_{\alpha}$ for all $\alpha, i = 1, ..., n$. Since \mathcal{T}_{α} is a topology, $\cap_{i=1}^n U_i \in \mathcal{T}_{\alpha}$ for all α . Thus $\cap_{i=1}^n U_i \in \cap \mathcal{T}_{\alpha}$

Let $\mathcal{T}_1 = \{\emptyset, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{T}_2 = \{\emptyset, \{b, c\}, \{a, b, c\}\}$. Then $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. $\{a, b\} \cap \{b, c\} = \{b\} \notin \mathcal{T}_1 \cup \mathcal{T}_2$. Thus, $\mathcal{T}_1 \cup \mathcal{T}_2$ is not a topology.

4b.) Lemma: $\cap \mathcal{T}_{\alpha}$ is the unique largest topology contained in all the \mathcal{T}_{α} .

 $\cap \mathcal{T}_{\alpha}$ is a topology contained in all the \mathcal{T}_{α} . Suppose \mathcal{T} is a topology contained in all the \mathcal{T}_{α} . Then $\mathcal{T} \subset \mathcal{T}_{\alpha}$ for all α implies $\mathcal{T} \subset \cap \mathcal{T}_{\alpha}$. Therefore $\cap \mathcal{T}_{\alpha}$ is larger than or equal to all other topologies contained in all the \mathcal{T}_{α} and thus $\cap \mathcal{T}_{\alpha}$ is the unique largest topology contained in all the \mathcal{T}_{α} .

Lemma: $\cup \mathcal{T}_{\alpha}$ is a subbasis for the unique smallest topology containing all the \mathcal{T}_{α} .

Since $X \in \mathcal{T}_{\alpha}, \cup_{U_{\beta} \in \cup \mathcal{T}_{\alpha}} U_{\beta} = X$. Thus, $\cup \mathcal{T}_{\alpha}$ is a subbasis.

Let \mathcal{T} be the topology generated by the subbasis $\cup \mathcal{T}_{\alpha}$. Suppose that \mathcal{T}' is a topology containing all the \mathcal{T}_{α} . Then $\cup \mathcal{T}_{\alpha} \subset \mathcal{T}'$. If $U \in \mathcal{T}$, then $U = \bigcup_{\beta \in B} (\bigcap_{i=1}^{n} U_{i,\beta})$ where $U_{i,\beta} \in \bigcup \mathcal{T}_{\alpha} \subset \mathcal{T}'$. Hence $U \in \mathcal{T}'$, and thus $\mathcal{T} \subset \mathcal{T}'$. Therefore \mathcal{T} is smaller than all or equal to other topologies containing all the \mathcal{T}_{α} and thus \mathcal{T} is the unique smallest topology containing all the \mathcal{T}_{α} .

4c.) The largest topology contained in \mathcal{T}_1 and $\mathcal{T}_2 = \mathcal{T}_1 \cap \mathcal{T}_2 = \{\emptyset, \{a\}, \{a, b, c\}\}$. A subbasis for the largest topology containing \mathcal{T}_1 and $\mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Thus, the largest topology containing \mathcal{T}_1 and $\mathcal{T}_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$.

8a.) Let $\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}$. Since (a, b) is open for every a < b, a and b rational, \mathcal{B} is a collection of open sets of R with the standard topology. Suppose that U is an open set in R and $x \in U$. Since $\mathcal{B}' = \{(a, b) \mid a < b, a \text{ and } b \text{ real numbersl}\}$ is a basis for the standard topology and U is open, there exists $a, b \in R$, a < b such that $x \in (a, b) \subset U$. Since the rationals are dense in R, there exists c, d such that a < c < x < d < b. Thus $x \in (c, d) \subset U$. Since $(c, d) \in \mathcal{B}$, \mathcal{B} is a basis for the standard topology.

8b.) Let \mathcal{T} be the topology generated by \mathcal{C} . $[\pi, 4)$ is open in the lower limit topology since it is a basis element, but $[\pi, 4)$ is not open in \mathcal{T} . $\pi \in [\pi, 4)$. If $\pi \in [a, b)$ where a, b are rational, then $a \leq \pi < b$. Since a is rational and π is irrational, $a \neq \pi$. Thus $a < \pi < b$. Hence $\frac{a+\pi}{2} \in [a, b)$, but $\frac{a+\pi}{2} \notin [\pi, 4)$. Thus $[a, b) \notin [\pi, 4)$. Hence there does not exists a basis element, [a, b) in \mathcal{C} such that $\pi \in [a, b) \subset [\pi, 4)$. Thus $[\pi, 4)$ is not open in \mathcal{T} .